ФИО соискателя Смирнов Владимир Ольгердович

Название диссертации *Обращение полярности нитроалканов в реакциях их катионных производных с π-нуклеофилами*

Шифр специальности –1.4.3. – органическая химия

Химические науки

Шифр диссертационного совета 24.1.092.01

Федеральное государственное бюджетное учреждение науки Институт органической химии им. Н.Д. Зелинского Российской академии наук

119991, Москва, Ленинский проспект, 47

Тел.:(499) 137-13-79

E-mail: sci-secr@ioc.ac.ru

Дата размещения полного текста диссертации на сайте Института http://zioc.ru/

04 апреля 2023 года

Дата приема к защите

06 апреля 2023 года

Дата размещения автореферата на сайте BAK https://vak.minobrnauki.gov.ru
07 апреля 2023 года

Федеральное государственное бюджетное учреждение науки Институт органической химии им. Н.Д. Зелинского Российской академии наук (ИОХ РАН)

на правах рукописи

СМИРНОВ ВЛАДИМИР ОЛЬГЕРДОВИЧ

Обращение полярности нитроалканов в реакциях их катионных производных с π-нуклеофилами

1.4.3 – Органическая химия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата химических наук

Работа выполнена в лаборатории функциональных органических соединений (№ 8) Федерального государственного бюджетного учреждения науки Институт органической химии им. Н.Д. Зелинского Российской академии наук

НАУЧНЫЙ РУКОВОДИТЕЛЬ

Иоффе Сема Лейбович

доктор химических наук, профессор ведущий научный сотрудник Лаборатории органических и металл-органических азоткислородных систем № 9 Института органической химии им. Н. Д. Зелинского Российской академии наук.

ОФИЦИАЛЬНЫЕ ОППОНЕНТЫ

Перекалин Дмитрий Сергеевич

доктор химических наук, заведующий Лабораторией функционализированных элементоорганических соединений № 133 Института элементоорганических соединений им. А. Н. Несмеянова РАН;

Аверина Елена Борисовна

доктор химических наук, профессор кафедры медицинской химии и тонкого органического синтеза химического факультета МГУ им. М.В. Ломоносова

ВЕДУЩАЯ ОРГАНИЗАЦИЯ

Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Защита состоится <u>«14»</u> июня 2023 г. в $11^{\underline{00}}$ часов на заседании Диссертационного совета 24.1.092.01 при Федеральном государственном бюджетном учреждении науки Институте органической химии им. Н.Д. Зелинского РАН по адресу: 119991 Москва, Ленинский проспект, 47.

С диссертацией можно ознакомиться в библиотеке Института органической химии им. Н.Д. Зелинского РАН и на официальном сайте ИОХ РАН: https://zioc.ru/

Автореферат разослан «25» апреля 2023 г.

Ваш отзыв в двух экземплярах, заверенный гербовой печатью, просим направлять по адресу: 119991 Москва, Ленинский проспект, 47, ученому секретарю Диссертационного совета ИОХ РАН.

Ученый секретарь Диссертационного совета 24.1.092.01 ИОХ РАН доктор химических наук

Газиева Г. А. Газиева

ВВЕДЕНИЕ. Общая характеристика работы

Актуальность проблемы. Планирование органического синтеза включает разбиение сложной молекулы на меньшие фрагменты (т.н. синтоны), которые в ходе синтеза сочетают согласно полярности определенных участков (электрофильные и нуклеофильные центры) в соответствии с наличием и расположением функциональных групп. Естественную полярность синтонов – например, α-нуклеофильность и β-электрофильность синтонов с карбонильной группой – в ряде случаев можно инвертировать (т.н. «umpolung»), что обогащает возможности синтеза. Методы инверсии полярности хорошо разработаны для карбонильных соединений.

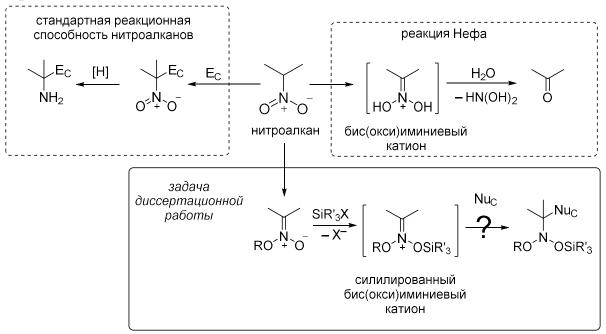


Схема 1. Задача диссертационной работы. E_C – углеродный электрофил, Nu_C – углеродный нуклеофил, [H] – восстановление.

В нитроалканах углеродный атом, несущий нитрогруппу, выступает как нуклеофильный центр, и его нуклеофильность, стандартная реакционная способность, хорошо охарактеризована количественно. Этот же центр может быть трансформирован в электрофильный углерод карбонильной группы в результате т.н. реакции Нефа (схема 1, верхняя часть). Таким образом возможно формально инвертировать реакционную способность α-углеродного атома нитроалканов с нуклеофильной на электрофильную. Тем не менее реакция Нефа как инверсия реакиционной способности (umpolung) нитроалканов имеет принципиальный недостаток.

Синтетические последовательности с участием нитросоединений, как правило, завершаются трансформацией нитрогруппы в аминогруппу, один

из самых востребованных функциональных фрагментов в органическом синтезе (Схема 1, левая верхняя часть). Реакция Нефа по своему механизму приводит к утрате азотсодержащего фрагмента нитрогруппы (Схема 1, правая верхняя часть). Это не позволяет рассматривать эту реакцию как способ обращения стандартной полярности нитроалканов при синтезе аминов и других азотсодержащих соединений. Попытки напрямую вовлечь электрофильные азотсодержащие интермедиаты реакции Нефа в образование С,С-связи имели очень ограниченный успех и сопряжены с привлечением жестких условий, резко сужающих круг возможных нуклеофилов.

Накопленные за последнее время сведения процессам силилирования нитроалканов и их производных открывают возможности для преодоления недостатков реакции Нефа как инструмента инверсии полярности нитроалканов. Имеющиеся представления о механизме реакции Нефа описывают ее как гидролиз (т.е. реакцию с водой как нуклеофилом) бис(окси)иминиевого катиона (схема 1, правая верхняя часть) – продукта таутомеризации протонирования нитроалкана. Силилирование И нитроалканов и их производных протекает - согласно современным представлениям – с участием катионов такого же типа, но с силильными группами («силилированный бис(окси)иминиевый катион», схема 1) вместо протонов в гидроксилах интермедиата реакции Нефа.

Генерация силилированных катионов производных нитроалканов в присутствии С-нуклеофилов может стать принципиально новым способом использования нитроалканов в образовании С,С-связи. (Схема 1, нижняя часть) Реализация такого способа инверсии реакционной способности нитроалканов не сопровождается утратой азотной функции, которая может служить источником аминогруппы. Осуществление процесса в безводных условиях роднит его с альдольной реакцией Мукаиямы (Mukaiyama aldol addition), высокоэффективным востребованным синтетическим методом с обширной областью применения.

Цель работы. Первой целью настоящей работы было реализовать взаимодействие углеродных π-нуклеофилов с циклическими алкилнитронатами в условиях силилирования. Такие объекты выбраны как модельные соединения с нитронатной функцией благодаря удобству работы с ними. Задача решалась на дигидро-1,2-оксазин-N-оксидах и изоксазолин-N-оксидах (шестичленные и пятичленные циклические алкилнитронаты, соответственно).

Второй целью настоящей работы была реализация обращения стандартной полярности нитроалканов. Задачи, которые решались в рамках этой цели, включали:

- реализацию реакции с углеродными π -нуклеофилами непосредственных производных нитроалканов: силилнитронатов и ациклических алкилнитронатов.
- исследование трансформаций продуктов такой реакции, с акцентом на возможность получения из них аминосоединений.

Научная новизна и практическая значимость работы. Реализована принципиально новая реакционная способность шести- и пятичленных циклических алкилнитронатов: присоединение углеродных π -нуклеофилов по третьему положению гетероцикла в условиях активации триалкилсилилтрифлатом.

Проанализированы стереохимические закономерности присоединения углеродных π-нуклеофилов к шести- и пятичленным циклическим алкилнитронатам и обнаружено, что при нуклеофильном присоединении к иминиевым катионам как систематическое явление имеет антиперипланарное (транс-) расположение возникающей неподеленной электронной пары азота и нуклеофила. Такой анализ благодаря образованию продукте нуклеофильного возможен присоединения редкой О-N-О системы с сильно замедленной инверсией азота.

привлечением алкилсилилнитронатов И как ключевых промежуточных соединений разработан метод присоединения силилкетенацеталей к а-положению нитроалканов и таким образом реализована инверсия стандартной реакционной способности нитроалканов. В случае первичных силилнитронатов в реакцию могут быть вовлечены непосредственно нитроалканы (генерация активного интермедиата *in situ*)

Найдены условия для гидрирования продуктов С,С-сочетания силилкетенацеталя и нитроалкана в эфиры β-аминокислот. С использованием дейтериевой метки показано, что при гидрировании образующийся при С,С-сочетании асимметрический центр может сохраняться.

<u>Степень</u> достоверности. Состав и структура соединений, обсуждаемых в диссертационной работе, подтверждены данными одномерной ЯМР спектроскопии на ядрах ¹H, ¹³C, ²⁹Si, двухмерной ЯМР-

спектроскопии (COSY, HSQC, NOESY), рентгеноструктурного анализа и элементного анализа. Использованы современные системы сбора и обработки научно-технической информации: электронные базы данных Reaxys (Elsevier), SciFinder (Chemical Abstracts Service) и Web of Science (Thomson Reuters), а также полные тексты статей, монографий и книг.

<u>Личный вклад соискателя</u> состоит в поиске, анализе и обобщении научной информации ПО тематике исследования, планировании экспериментов. Проведение экспериментов и выделение и очистка соединений осуществлялись соискателем лично либо ПОД руководством. Соискатель непосредственным принимал участие установлении строения полученных соединений с помощью физикохимических спектральных методов анализа, обрабатывал интерпретировал полученные результаты. Соискатель также осуществлял апробацию работ на конференциях и выполнял подготовку публикаций по выполненным исследованиям.

<u>Публикации.</u> По результатам работы опубликовано 5 статей в ведущих зарубежных и отечественных журналах и 3 тезиса докладов на российских конференциях.

Апробация работы. Результаты диссертационной работы представлены на трех российских конференциях: Четвертый Всероссийский симпозиум по органической химии «Органическая химия — упадок или возрождение?» (Москва, 2003 г), II Молодежная конференция ИОХ РАН (Москва, 2006) и IX Научная школа-конференция по органической химии (Москва, 2006).

Структура и объем работы. Материал диссертации изложен на 158 обзора страницах И состоит ИЗ введения, литературы на тему трансформациями «Индуцированная кислотно-основными αэлектрофильность нитросоединений образовании С,С-связи», при обсуждения результатов, экспериментальной части, выводов и списка литературы. Диссертация включает 59 схем, 1 рисунок и 10 таблиц. Библиографический список состоит из 108 наименований.

Основное содержание работы представлено в двух главах, относящихся к циклическим нитронатам и ациклическим нитронатам, эти главы разделены на пять и три пункта, соответственно, по конкретным аспектам взаимодействия обсуждаемых нитронатов с нуклеофилами, и после двух глав следует короткое обобщающее заключение.

Благодарности. Автор признателен Хомутовой Ю.А. за плодотворное сотрудничество на протяжении выполнения диссертации, получение и трактовку ЯМР-спектров. Автор благодарен Нестерову И.Д. и чл.-корр. РАН Антипину М.Ю. за проведение РСА. Также автор благодарит д.х.н. Сухорукова А.Ю. и чл.-корр. РАН Дильмана А. Д. за содействие в решении организационных вопросов.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

1. Взаимодействие углеродных π -нуклеофилов с циклическими алкилнитронатами

качестве первоначальных объектов для исследования использовали циклические алкилнитронаты. Их стабильность и удобство обращения делают их подходящими объектами для первоначальных обстоятельных исследований, а методы получения делают их вполне доступными. Реакционная способность циклических алкилнитронатов вполне соответствует ожидаемой для ковалентных нитронатов вообще. циклические алкилнитронаты широко используют характерном и наиболее востребованном в органическом синтезе процессе с участием нитронатной функции – [3+2]-циклоприсоединении с диполярофилами. Соответственно, можно ожидать, что реализация для них нового процесса, присоединения к нитронатному фрагменту нуклеофилов, будет коррелировать с реакционной способностью нитронатов в целом и будет типичной для нитронатной функции.

Из циклических нитронатов наиболее доступными, удобными и хорошо изученными являются нитронаты с шестичленным циклом (дигидро-1,2-оксазин-N-оксиды). Они стали первым типом ковалентных нитронатов, использованных в настоящем диссертационном исселодовании. Другим классом доступных циклических алкилнитронатов являются пятичленные нитронаты, или изоксазолин-N-оксиды, и они также были изучены.

Основным способом получения шестичленных циклических реакция гетеро-[4+2]-циклоприсоединения алкилнитронатов является (гетеро-реакция Дильса-Альдера) нитроолефина (в качестве 4-компоненты) и алкена (диенофила) при промотировании кислотами Льюиса. Для целей большинство диссертации использованных шестичленных алкилнитронатов было получено реакции гетеро-[4+2]-ПО цклоприсоединения β-нитростиролов (Ph-CH=CH-NO₂, Ar-CH=CH-NO₂ и Ph-CH=CMe-NO₂), 1-нитропропена Me-CH=CH-NO₂, 2-нитропропена CH_2 =C(Me)- NO_2 или бензоилоксинитроэтиленов ArCOO-CH=CH- NO_2 с 2-метоксипропеном CH_2 =C(OMe)Ме, этилвиниловым эфиром CH_2 =CHOEt или изобутиленом CH_2 = CMe_2 (Схема 2, верхняя левая часть) Наименее замещенный из использованных шестичленных циклических алкилнитронатов $\mathbf{1k}$ был получен циклизацией 1-иодо-4-нитропентана $ICH_2CH_2CH_2CH(NO_2)CH_3$ (Схема 2, верхняя правая часть)

$$R^{3} = R^{4} + O^{2} + O^{2$$

Схема 2. Получение исследуемых в диссертации циклических алкилнитронатов. Также приведена нумерация атомов в гетерцикле.

Для получения пятичленных циклических алкилнитронатов (изоксазолин-N-оксиды) мы использовали метод на основе циклоприсоединения силилнитронатов αгалогеннитроалканов (генерируются in situ из галогеннитроалкенов) к алкенам. Все использованные пятичленные циклические алкилнитронаты **2а-h**, из-за нестабильности представителей с фрагментом HC=N, имеют экзоциклический заместитель при углероде нитронатного фрагмента (R ≠ Н; Схема 2), шестичленные нитронаты 1а-і при нитронатном углероде несут как водород, так и метил ($R^1 = H$, Me; Схема 2)

1.1 Реакция шестичленных циклических алкилнитронатов с ковалентными нуклеофилами.

Мы обнаружили, что шестичленый алкилнитронат **1a** реагирует с силиленолятами ацетона **3a**, n-метоксиацетофенона **3b**, циклогесанона **3c** с образованием изоксазолов **4a-c** или с силиленолятом циклопентанона **3d** с образованием N-гидроксипиррола **4d** (Схема 3, приведен предполагаемый механизм). Выход реакции умеренный (54-65 %), условия, привлеченные для проведения реакции, были взяты по аналогии с условиями других реакций, для которых предполагалось образование бис(силилокси)иминиевого катиона: активный силилирующий реагент типа Me₃SiOTf и пониженные температуры (~ -30 °C) в хлористом метилене CH₂Cl₂.

Схема 3. Реакция нитроната 1а с силиленолятами кетонов 3а-d

Этот результат явно фиксировал сам факт образования С,С-связи между нуклеофильным центром силиленолята и нитронатным углеродом алкилнитроната, который, соответственно, выступал в той роли, которую ему и хотелось навязать – электрофильным центром. Однако для этой реакции, очевидно, остается возможность существенных улучшений с позиций синтетической значимости. Во-первых, выходы реакции умеренные (54-65 %), и даже такие выходы требуют использования силиленолята в существенном избытке (всего используется 3.5 эквивалента нуклеофила). Кроме того, реакция протекает с потерей существенной стереохимической информации: исходный нитронат 1а содержит два асимметрических центра, и присоединение нуклеофила создает в аддукте 5 третий углеродный стереоцентр на нитронатном атоме (положение 3 дигидрооксазина) и четвертый на нуклеофильном атоме силиленолята. Однако с образованием плоского изоксазольного или пиррольного кольца в продукте 4 три из четырех стереоцентров аддукта 5 уничтожаются. Мы предположили, что эти недостатки, вызванные лабильностью первичного аддукта 5, может устранить привлечение по возможности более мягких условий реакции: более низких температур и, соответственно, при необходимости - более активных нуклеофилов.

Действительно, первичный аддукт **5b** можно выделить, если реакцию с нитронатом **1b** провести при -78 °C в CH_2Cl_2 в присутствии каталитического (0.1 экв) количества силилтрифлата TBSOTf с использованием силилкетенацеталя из метилацетата CH_2 =C(OMe)OTBS **3e** как более активного нуклеофила (схема 4). Эту реакцию можно распространить и на другие циклические нитронаты **1c-k** (Таблица 1),

Схема 4. Реакция шестичленных циклических алкилнитронатов с силилкетенацеталем 2е.

Для шестичленных циклических алкилнитронатов **1b-k** реакция с силилкетенацеталем **3e** протекает с отличными выходами (88-95 %), однако нитронаты **1i-k** с заместителем при электрофильном (нитронатном) центре $(R^1=Me)$ требуют увеличения времени реакции (1 час для **1b-h** и 18 часов для **1i-k**). (таблица 1).

Таблица 1 Сочетание шестичленных циклических алкилнитронатов и 3е (Схема 4)

	нитронат,	\mathbb{R}^1	R^2	\mathbb{R}^3	R ⁴	выход,	dr ^{a)}
	аддукт					%	cis-5:trans-5
1	1b, 5b	Н	Ph	OMe	Me	91	>30:1
2	1c, 5c	Н	Ph	Me	Me	91	>30:1
3	1d, 5d	Н	Me	Me	Me	88	>30:1
4	1e, 5e	Н	OBz	Me	Me	88	1:23
5	1f, 5f	Н	O ₂ CC ₆ H ₄ NO ₂	Me	Me	92	1:14
6	1g, 5g	Н	<i>p</i> -C ₆ H ₄ OMe	Н	OEt	93	>1:30
7	1h, 5h	Н	<i>p</i> -C ₆ H ₄ OMe	OEt	Н	88	1.5:1
8	1i, 5i	Me	Н	Me	Me	90	_
9	1j, 5j	Me	Ph	Me	Me	92	>30:1
10	1k, 5k	Me	Н	Н	Н	95	_
а) лиастереоселективность по углеролным центрам С ³ -С ⁴ , ">30:1" – выделен							

а) диастереоселективность по углеродным центрам C^3 - C^4 . ">30:1" — выделен исключительно один изомер.

Реакция **3e** с нитронатами **1b-g,j** протекает с хорошей диастереоселективностью образования соседних углеродных асимметрических центров положениях 3 и 4 насыщенного гетероцикла (соотношение диастереомеров от 14:1 до образования исключительно одного изомера). Исключением является сочетание **3e** + **1h**, при котором фактически селективности не наблюдается (соотношение диастереомеров

2:3). Инверсия азота с двумя кислородными заместителями в аддуктах **5** сильно заторможена, и в пяти случаях, когда с помощью PCA удалось установить конфигурацию O–N–O фрагмента (**5b**,**e**,**f**,**g**,**j**), обнаружена *транс*-конфигурация неподеленной электронной пары (НЭП) азота и фрагмента CH_2CO_2Me нуклеофила **3e**.

Для оценки общности реакции в отношении нуклеофила мы исследовали реакции с енамином **3f**, силиленолятом **3g**, металлилстаннаном **3h**, (схема 5) а также с триметилаллилсиланом CH₂=CH-CH₂SiMe₃. Поскольку реакционная способность этих нуклеофилов сильно различается и могут сильно отличаться условия для реакции с циклическим нитронатом, мы использовали нитронат **1c** без лабильного ацетального центра в шестом положении нитроната и ожидаемых продуктов **5**.

Ph SiOTf Ph
$$3f$$
 43% $(60 \% via 5m)$ $5l$ Ph $ON OSi$ OSi OTf $SnBu_3$ $Si = Me_2^tBuSi$

Схема 5. Реакция шестичленного циклического нитроната 1с с различными нуклеофилами.

Силиленолят **3f** реагирует с нитронатом **1c** с образованием ожидаемого кетона **5l** с выходом 43 %, для протекания реакции требуется повысить температуру до -30 °C. Тот же самый продукт может быть получен с несколько бОльшим выходом (60 %) в реакции с енамином **3g** при -94 °C с последующим гидролизом первоначально образующейся иминиевой соли **5m**; сама иминиевая соль **5m** тоже может быть выделена с выходом 51 %. В реакции с металлилстаннаном **3h** (четыре часа при -78 °C, затем 45 минут при -30 °C) с выходом 60 % образуется алкен **5n**. Во всех случаях образуется исключительно один такой же диастереомер, что и в реакции с силилкетенацеталем **3e**. Триметилаллилсилан $CH_2=CH-CH_2SiMe_3$ в реакцию с нитронатом **1c** вовлечь не удалось. Реакция **1c** с нуклеофилами **3g** и **3h** требует стехиометрического количества силилтрифлата TBSOTf.

1.2 Реакция пятичленных циклических алкилнитронатов с силилкетенацеталем 3е.

Пятичленные циклические нитронаты **2a-h** в целом также гладко реагируют с силилкетенацеталем **3e** в условиях, близких к найденным для реакции шестичленных аналогов **1** (Схема 6, таблица 2). Однако в этом случае для хорошего выхода продукта реакции **6** (70-90 %) требуется особое внимание уделить нейтрализации реакционной массы при завершении реакции

Схема 6. Реакция пятичленных циклических алкилнитронатов 2 с силилкетенацеталем 3е

За исключением двух случаев образования исключительно одного изомера (6b,h), при реакции образуются изомеры по паре углеродных стереоцентров, диастереоселективность реакции невысока (от 3:1 до 11:1) с преобладанием trans-изомера. Как случае систематическим шестичленных аддуктов 5, инверсия азота триаде O-N-Oизоксазолидинов 6 чрезвычайно медленная, и НЭП азота имеет трансрасположение к фрагменту CH_2CO_2Me нуклеофила **3e**.

Таблица 2. Сочетание пятичленных циклических алкилнитронатов и **3e** (Схема 6)

1 405	таолица 2. Сочетание питичленных циклических алкилнитронатов и 36 (Схема о)								
	аддукт	R	R'	температура	выход выход		общий выход, %		
				/время, ч	trans-6, cis-6,		(соотношение		
					% %		trans/cis)		
1	6a	Me	Ph	-94 °C /1	54 16		70 (3.4 : 1)		
2	6a	Me	Ph	-78 °C /1	61	16	77 (3.8 : 1)		
3	6b	Me	OEt	-78 °C /2	90 –		90 (только <i>trans</i> -		
							6b)		
4	6c	Me	CO ₂ Me	-78 °C/ 2	66	6	72 (11:1)		
5	6d	Et	Ph	-78 °C /1.5	a))	77 (3.5 : 1)		
6	6e	<i>n</i> -C ₆ H ₁₃	Ph	-78 °C /2.5	a)		91 (4.3 : 1) ^{b)}		
7	6f	CH ₂ Ph	Ph	-78 °C /1.25	a)		71 (5.5 : 1)		
8	6g	(CH ₂) ₂ CO ₂ Me	Ph	-78 °C /3.5	68	22	90 (3.0 : 1) °)		
9	6h	CH ₂ Ph	OEt	-94 °C /1.5	89	_	89 (только <i>trans-</i>		
							6h)		

а) получена неразделяемая на силикагеле смесь изомеров

b) выход скорректирован на конверсию; наряду с продуктом **4p** (выделенный выход 64 %) возвращено 30 % исходного нитроната **1p**

 $^{^{\}rm c)}$ выход скорректирован на конверсию; наряду с продуктом **4r** (*trans*-**4r** 34 %, *cis*-**4r** 11 % общий выделенный выход 45 %) возвращено 50 % исходного нитроната **1r**

1.3 Механизм реакции циклических нитронатов 1 и 2 с 3е

С уверенностью можно считать, что реакции на схемах 4, 5 и 6 действительно протекает через катионы 1-ТВЅ⁺ и 2-ТВЅ⁺ в соответствии с первоначальной предпосылкой о генерации силилированных катионов ковалентных нитронатов и вовлечении их во взаимодействие с утлеродными нуклеофилами. Первым явным указанием на это было прямое наблюдение катиона 1с-ТВЅ⁺ по спектрам ПМР при взаимодействии ТВЅОТf и нитроната 1с. Добавление при охлаждении силилтрифлата ТВЅОТf к раствору нитроната 1с в CDCl₃ в ЯМР-ампуле вызывает появление второго набора сигналов, смещенных в слабые поля, и их смещение монотонно убывает с удалением соответвующих ядер от атома азота (схема 7).¹

Схема 7. ЯМР-наблюдение реакции **1c** и TBSOTf в CDCl₃. Числа курсивом указывают химсдвиги соответствующих протонов, в скобках смещение сигналов при образовании катона **1c**-TBS⁺ (м.д.)

Наблюдение катиона 1c- TBS^+ дополняется прямым наблюдении силилированных катионов из нитронатов 1b, 1c, 1f, 1h, 1j и 2a в условиях реакции (CD_2Cl_2 , -73 °C) при добавлении силилтрифлата к раствору нитроната по спектрам 1H и ^{13}C ЯМР. Кроме этого, для ряда катионов реакция с углеродными нуклеофилами наблюдалась напрямую методами 1H ЯМР-спектроскопии с получением кинетических характеристик, в частности, так наблюдались реакции 1c + TBSOTf + 3f и 1j + TBSOTf + 3e. Данные дополнительные сведения в этом абзаце, связанные с исследованием силилированных катионов нитронатов с позиций физико-

¹ Автор признателен Хомутовой Ю.А. за помощь в осуществлении этого эксперимента. ² результаты физико-химических исследований с участием автора, имеющие отношение к настоящей диссертации, изложены в совместной публикации Khomutova Y. A., Smirnov V. O., Mayr H., Ioffe, S. L. Thermodynamic Stability and Reactivity of Silylated Bis(oxy)iminium Ions // J. Org. Chem. − 2007. − vol. 72, № 24. − P.9134–9140. DOI:10.1021/jo070633x

химических методов, получены с участием автора, включены в диссертацию Хомутовой Ю. А.³ и приводятся в справочном порядке.

Фокусируясь на синтетическом аспекте реакции циклических алкилнитронатов 1b-j и 2a-h силилкетенацеталем 3e, следует отметить следующие два соображения. Во-первых, использование мягких условий реакции позволило получать непосредственно первичные продукты 5 и 6 взаимодействия нуклеофила 3 с нитронатами 1 и 2, подавив последующие представленные на схеме 3 процессы, и сохранить образующихся при реакции стереоцентры.

Во-вторых, минимизация побочных процессов позволила использовать углеродный π -нуклеофил **3e-h** в стехиометрическом количестве без существенного избытка. Таким образом, используя циклические алкилнитронаты как модельные соединения, мы смогли осуществить реакцию ковалентных нитронатов с π -нуклеофилами в синтетически привлекательном варианте, который имеет сходство с альдольной реакцией Мукаиямы.

Собранный к этому моменту материал позволяет перейти к исследованию реакции углеродных π -нуклеофилов с ациклическими нитронатами. В этой задаче особенно привлекательным является тесное синтетическое родство объектов с типичными нитроалканами. Успех в ее решении позволит говорить о реализации в синтетически привлекательном варианте α -электрофильности нитроалканов в целом, т.е. осуществить обращение стандартной полярности нитроалканов как общий и широко применимый метод.

2. Взаимодействие углеродных π -нуклеофилов с ациклическими нитронатами.

Силилнитронаты являются легкодоступными и термически умеренно стабильными производными нитроалканов, их получение является стандартной процедурой, характеризуется надежностью, селективностью и эффективностью, и таким образом мы получили и выделили ряд ТВS-нитронатов 8а-d первичных нитроалканов 7 и нитронат 8і 2-нитропропана (схема 8, левая часть).

 $^{^3}$ Хомутова Ю. А. Изучение силилирования шестичленных циклических нитронатов методом ЯМР: дис. ... канд. хим. наук: 02.00.03 / Хомутова Юлия Анатольевна. – М., 2008. - 183 с.

Схема 8. Получение силилнитронатов **8a-d,і** и алкилинитронатов **8e-h,j-m** из нитроалканов **7**. Для конкретного соответствия шифра соединения и заместителей см. таблицу **3**.

Ациклические алкилнитронаты из-за своей низкой термической стабильности (как правило, в заметной степени разлагаются в течение часов температуре) являются более проблемными при комнатной использовании субстратами, По причине нестабильности ациклические алкилнитронаты мы генерировали *in situ* по литературной процедуре нитроалканов выделенных калиевых солей триэтилоксонийтетрафторбората $Et_3O^+BF_4^-$ в CH_2Cl_2 (схема 8, правая часть).

2.1 Реакция ациклических нитронатов с силилкетенацеталями

условий, ранее отработанных Привлечение циклических алкилнитронатах, позволило гладко провести реакцию силилкетенацеталем Зе и для ациклических нитронатов (таблица 3, схема 9). Выходы аддуктов 9а-d силилнитронатов 8а-d первичных нитроалканов **7а-d** очень хороши и составяют 82-92% (таблица 3, строки 1-4); выходы аддуктов 9е-h алкилнитронатов 8е-h первичных нитроалканов 7b-е также от неплохих до хороших, но несколько ниже, 56-87 % (таблица 3, строки 5-8). Для производных одних и тех же первичных нитроалканов 7b-d силилнитронаты дают выходы аддуктов систематически выше, чем этилнитронаты, на 5-12 % (таблица 3, строки 2-4 и 5-7).

R'' = TBS:
$$i$$
 = TBSCI/Et₃N (8a-d)

R'' = Et: i = 1. KOtBu;

2. Et₃O⁺BF₄⁻ (8e-h,j-m)

Схема 9. Реакция силилнитронатов **8a-d** ациклических алкилнитронатов **8e-h,j-m** с силилкетенацеталем **3e.** Для конкретного соответствия шифра соединения и заместителей см. таблицу 3.

Таблица 3. Сочетание ацисклических нитронатов 8 и силилкетенацеталя 3е

	worming of the resident administration of the resident and the resident of the resident and the resident of the resident and							
	нитроалкан 7,	R	R'	R"	TBSOTf [экв.]/	аддук	выход	
	нитронат 8				Т/τ [ч] а)	Т	9	
						9	[%] ^{b)}	
1	7a, 8a	Н	Me	TBS	0.20 / –94 °C / 0.75	9a	88	
2	7b, 8b	Н	Et	TBS	0.20 / –94 °C / 1.0	9b	82	
3	7c, 8c	Н	PhCH ₂	TBS	0.10 / –94 °C / 2.0	9c	90	
4	7d, 8d	Н	MeCO ₂ CH ₂ CH ₂	TBS	0.10 / –94 °C / 1.0	9d	92	
5	7b, 8e	Н	Et	Et	0.10 / -78 °C / 1.5	9e	70	
6	7c, 8f	Н	PhCH ₂	Et	0.10 / -78 °C / 18	9f	78	
7	7d, 8g	Н	MeCO ₂ CH ₂ CH ₂	Et	0.10 / -78 °C / 15	9 g	87	
8	7e, 8h	Н	MeCOCH ₂ CH ₂	Et	0.10 / -78 °C / 18	9h	56	
9	7f, 8i	Me	Me	TBS	0.20 / -78 °C / 18	-	_ c)	
10	7f, 8i	Me	Me	TBS	0.20 / -30 °C / 18	-	_ d)	
11	7f, 8j	Me	Me	Et	0.20 / -78 °C / 1.0	9j	70	
12	7g, 8k	Me	PhCH ₂	Et	0.20 / –78 °C / 18	9k	18	
13	7h, 8l		$-(CH_2)_4-$	Et	0.20 / –78 °C / 2.0	91	51	
14	7i, 8m		-(CH ₂) ₅ -	Et	0.20 / -78 °C / 1.0	9m	72	

а) количество TBSOTf, экваваленты / температура реакции / время реакции, часы

Поведение производных вторичных нитроалканов **7f-i** заметно отличается. Продукт реакции силилнитроната **8i** 2-нитропропана **7f** с силилкетенацеталем **3e** выделить не удалось. В то же время этилнитронат 2-нитропропана **8j** дал соответствующий аддукт **9j** с хорошим выходом (70 %), и эта реакция реализуется и на других типичных вторичных нитроалканах, включая нитроциклопентан **7h** и нитроциклогексан **7i** (таблица **3**, строки 11-14).

Как и в случае пятичленных циклических алкилнитронатов 2, для успешного выделения аддуктов 9 ациклических нитронатов 8 по нейтрализация силилтрифлата завершении реакции важна мягкая метанолом и триэтиламином перед водной обработкой. При выделении аддуктов этилнитронатов 9е-h, помимо этих мер, необходимо также использовать силикагель, обработанный триэтиламином, что, видимо, связано ИХ высокой чувствительностью К действию кислот. Хроматографирование аддуктов 9а-d из силилнитронатов особых мер не требует.

b) выделенный выход на силилнитронат **8a-d,i** или, для этилнитронатов, на соль **7**° нитроалкана **7**

с) нет целевого продукта, исходный нитронат **8i** возвращен правктически количественно после нейтрализации реакционной массы

d) нет целевого продукта, получена сложная смесь неидентифицируемых продуктов

Для первичных нитроалканов 7 реакция С,С-сочетания может быть осуществлена напрямую на нитросоединениях, с совмещением образования силилнитронатов и их сочетания с нуклеофилом в одном сосуде (one-pot) (схема 10). Последовательное добавление к раствору нитроалкана 7 1.0 эквивалента сильного амидинового основания (DBU, Диазабицикло[5.4.0]ундец-7-ен) ЧУТЬ большего количества И силилтрифлата (1.1 эквивалент) в присутствии силилкетенацеталя 3е дает соответвующие аддукты 9. с хорошими и отличными выходами (схема 10, таблица 4), сопоставимыми с выходами С,С-сочетания при применении выделенных силилнитронатов.

Схема 10. Сочетание 3е непосредственно с первичными нитроалканами.

Помимо удобства и простоты, однореакторный (one-pot) протокол имеет то достоинство, что он применим к нитроалканам, силилнитронаты которых не могут быть выделены в индивидуальном виде (в первую очередь это относится к нитрометану): аддукт **9n** получается с выходом (82 %) (см. таблицу 4 строку 5).

Таблица 4 Реакция 7+3e при генерации силилнитронатов *in situ*

	<u> </u>		1 '				
	нитроалкан	R	основание	T	время	продукт	выход
				[°C]	[4]	9	9 [%] ^{a)}
1	7b	Et	DBU	-94	1.0	9b	65
2	7c	PhCH ₂	DBU	-94	0.75	9c	93
3	7c	PhCH ₂	Et ₃ N	-25	18	_	0 _{p)}
4	7d	MeCO ₂ CH ₂ CH ₂	DBU	-94	0.75	9d	87
5	7 j	Н	DBU	-94	1.0	9n	82
6	7k	4-MeOC ₆ H ₄	Et ₃ N	-25	18	90	88

а) выделенный выход

При наличии в субстрате двух первичных нитрогрупп one-pot методика позволяет контролировать число вовлекаемых CH_2NO_2 фрагментов соотношением реагентов (схема 11). Из 1,4-динитробутана, 71, можно получить и моноаддукт **9p** с выходом 86 %, и продукт двойного присоединения **9q** с выходом 58 %.

b) продукт C,C-сочетания не определяется по TCX

ОТВS OME
$$O_2N$$
 OME O_2N ONE O_2N ONE

Схема 11 вовлечение одной и обеих нитрогрупп 1,4-динитробутана **71** в реакцию с **3e**

Общность реакции С,С-сочетания относительно структуры силилкетенацеталя была рассмотрена на силилнитронате 7а как модельном объекте (схема 12). Силилкетенацеталь **3i** из эфира фенилуксусной кислоты $PhCH_2CO_2Me$ заметно менее активен, чем силилкетенацеталь 3e, и достижение препаративных выходов В реакции требует НИМ стехиометрического количества катализатора TBSOTf и увеличенного времени реакции; продукт 9r образуется в виде одного диастереомера. Силилкетенацеталь 3j из у-бутиролактона дает продукт сочетания 9s с количественным выходом в тех же условиях, что и силилкетенацеталь 3е, однако без селективности в образовании пары новых стереоцентров.

Схема 12. Вариация силилкетенацеталя в С,С-сочетании с силилнитронатом

Амбидентный силилкетенацеталь 3k из метилкротоната реагирует преимущественно терминальным углеродом диеновой системы с образованием (E)-изомера сопряженного непредельного эфира 9t. Реакция по интернальному нуклеофильному центру также протекает, но в меньшей

степени (селективность 6.5:1), с образованием одного стереоизомера аддукта **9u**; общий выход обоих изомеров 93 %.

В целом практический вывод по реализации α-электрофильности нитроалканов 7 состоит в том, что в случае первичных нитросоединений однозначно предпочтительно использование силилнитронатов как ключевых интермедиатов. В случае вторичных нитроалканов необходимо пребегать к использованию этилнитронатов; выходы продуктов реакции при этом несколько ниже, чем для первичных аналогов, однако также препаративно значимы.

2.2 Трансформации аддуктов ациклических нитронатов с силилкетенапеталями

Нитрогруппа нитроалканов 7 в аддуктах 9 становится бис(окси)аминным фрагментом, который известен, но практически не востребован в органическом синтезе как целевой структурный мотив. Однако он может выступать предшественником других функциональных групп, представляющих практический интерес. Аддукты 9 являются нитрозоацеталями; как (гетеро)ацетали, они могут проявлять реакционную способность при действии кислот, как производные нитрозосоединений, они могут быть восстановлены до аминов.

В соответствии с известной чувствительностью нитрозоацеталей к кислотам, даже очень разбавленные растворы (0.001 М) трифторуксусной кислоты СГ₃СО₂Н в этаноле или метаноле вызывают необратимую трансформацию аддуктов 9d,g,j,l в соединения 12-14, предположительно, через участие нитрениевого катиона 10 (схема 13). В случае аддуктов 9d,g первичного нитроалкана 7d, т.е. имеющих α -протон при азоте (R = H), образуются 12a,b (85-90%),оксимы вероятно результате **10** депротонориования нитрениевого катиона (возможно, предшествующим 1,2-С, N – гидридным сдвигом).

Схема 13. Трансформации аддуктов 9 в кислой среде.

В случае аддуктов 9j,l вторичных нитроалканов 7f,h ($R \neq H$, $R' \neq H$) стабилизация нитрениевого катиона 10 через прямое депротонирование невозможна из-за отсутствия такого атома водорода, и реализуются два других варианта эволюции катионной системы. Первый состоит в присоединении катиону молекулы растоврителя (EtOH) К депортонированием, и этот вариант единственный для аддукта 9і из 2нитропропана 7f (выход N,N-диэтоксиамина 13a 95 %). В аддукте 9l из нитроциклопентана 7h этот вариант также реализуется (выход N,Nдиэтоксиамина 13b 32%), но доминирует 1,2-алкильный сдвиг в нитрениевом катионе 10 с расширением цикла до шестичленного в катионе 11 и образованием после депротонирования N-этоксипиперидина 14 с выходом 58 %.

Крайне характерно, что в аддуктах **9g,l**, с фрагментом TBSO-N-OEt трансформации с образованием оксима **12b** и пиперидина **14** связаны исключительно с элиминированием OTBS-группы. Также примечательно, что трансформации на схеме 12, несмотря на разнообразие, протекают весьма чисто, выделенные выходы продуктов составляют 85-95 %.

Другой тип реакции нитрозоацеталей, восстановление азота до аминогруппы, представляется наиболее важным способом трансформации бис(окси)аминов, и его обычно осуществляют гидрированием на никеле Ренея. Формально этот процесс не затрагивает углеродный скелет и связан изменением окружения лишь атома азота. Однако элиминирования силанола TBSOH от аддуктов, например, 9d,g из первичного нитроалкана 7d с образованием оксимов 12a,b, не позволяет исключить возможность восстановления таких нитрозоацеталей через промежуточное образование оксимов. Конечный результат восстановления в аминогруппу NH₂ в обоих случаях – и при прямом гидрировании N-O связей аддукта 9, и при гидрировании промежуточно образующегося оксима 12 - будет одинаков. Различие, однако, состоит в том, что асимметрический центр в аддукте 9 на атоме углерода при азоте случае образования оксима 12 теряется. Поскольку этот центр образуется в ходе исследуемой реакции С,С-сочетания, представляется актуальным вопрос, возможно ли его сохранить при гидрировании аддуктов 9 первичных нитроалканов.

Для решения этой проблемы мы изучили гидрирование аддуктов $\mathbf{9d}$, \mathbf{g} , меченых дейтерием по этому стереоцентру, — оба аддукта из одного первичного нитроалкана $\mathbf{7d}$ и отличаются одним заместителем при кислороде нитрозоацеталя (схема 14, таблица 5). Анализируя результаты, мы считали, что сохранение дейтерия в альфа-положении к азоту в восстановленном амине $\mathbf{15}$ соответствует сохранению стереоцентра. Дейтериевая метка была введена изотопным обменом α -протонов в нитросоединении $\mathbf{7d}$ с $\mathbf{D_2O}$ в $\mathbf{T}\Gamma\Phi$ и последующим синтезом аддуктов $\mathbf{9d}$ - d_1 и $\mathbf{9g}$ - d_1 из полученного $\mathbf{7d}$ - d_2 .

$$\begin{array}{c} \text{MeO}_2\text{C} & \begin{array}{c} \text{D} \\ \text{CO}_2\text{Me} \end{array} & \begin{array}{c} \text{H}_2 \text{ / Ni-Ra, MeOH} \\ 25 \text{ °C, 18 часов} \end{array} & \begin{array}{c} \text{MeO}_2\text{C} \\ \text{Промотор (2.5 экв),} \end{array} & \begin{array}{c} \text{MeO}_2\text{C} \\ \text{NHBoc} \end{array} & \begin{array}{c} \text{NHBoc} \\ \text{NHBoc} \end{array} \\ \\ \textbf{9g-}d_1 \text{ (R" = Et)} \end{array}$$

Схема 14. Гидрирование дейтерированных аддуктов $\mathbf{9d}$ - d_1 и $\mathbf{9g}$ - d_1 на никеле Ренея.

⁴ Строго говоря, хотя сохранение дейтериевой метки говорит о сохранении стереоцентра на соответствующем углероде, утрата дейтериевой метки не говорит о потере стереоцентра. Например, при образовании оксима на поверхности никеля и его гидрировании без десорбции возможно сохранение конфигурации благодаря стереодифференциации двух сторон плоского sp²-углерода в сорбированном состоянии, однако это приведет к потере дейтерия. Таким образом, степень сохранения дейтерия является нижней оценкой степени сохранения стереоцентра.

Аддукты 9d и 9g ведут себя заметно по-разному в условиях гидрирования. Бис(силокси)амин 9d из силилнитроната не дает продукта гидрирования при гидрировании непосредственно на никеле Ренея (таблица 5, строка 1). Для успешного гидрирования 9d требуется добавление КF или КНГ₂, и в таких условиях гидрирование протекает с отличными выходами и фактически полным сохранением дейтериевой метки (таблица 5, строки 2,3). Аддукт 9g этилнитроната 8g гидрируетеся с неплохим выходом напрямую безо всяких добавок, но с существенной потерей дейтериевой метки в 15 (таблица 5, строка 4), а добавление фторида калия КF обеспечивает высокое сохранение дейтерия в 15 при низком химическом выходе (таблица 5, строка 5). Бифторид калия КНГ₂ практически не меняет выхода продукта 15 по сравнению с непосредственным гидрированием, но частично снижает потерю дейтериевой метки, хотя и в этом случае ее остается лишь половина (таблица 5, строка 6).

Таблица 5 Гидрирование дейтерированных аддуктов 9d и 9g

	аддукт 9 (изотопная	промотор	выход	изотопная	сохранение
	чистота, %) ^{а)}	(2.5 экв.)	15, [%] ^{b)}	чистота 15,	дейтерия в 15,
				$[\%]^{a)}$	[%]
1	9d - d_1 , R" = OTBS (88 %)		c)		
2	9d - d_1 , R" = OTBS (88 %)	KF	83 %	87 %	99 %
3	9d - d_1 , R" = OTBS (88 %)	KHF ₂	95 %	84 %	95 %
4	9g - d_1 , R" = OEt (84 %)		85 %	15 %	18 %
5	9g - d_1 , R" = OEt (84 %)	KF	35 %	81 %	96 %
6	9g - d_1 , R" = OEt (84 %)	KHF ₂	81 %	44 %	52 %

а) определено по ¹H-ЯМР

Частичная потеря метки при гидрировании аддукта **9g** и различная ее степень в зависимости от присутствия добавок указывает на сложный механизм реакции. Гидрирование, вероятно, протекает по нескольким путям, часть из которых оставляет связь С-D в **9g** нетронутой и часть включает ее разрыв, причем баланс между этими вариантами определяется условиями. Это существенный результат, так как обычно при гидрировании нитрозоацеталей возможность рацемизации/эпимеризации соседнего с азотом углеродного стереоцентра не рассматривается.

В практическом отношении важно, что найдены условия восстановления нитрозоацетального фрагмента в аддуктах 9 первичных

b) гидрирование немеченых соединений **9d** и **9g** в указанных условиях дает немеченый аминоэфир **15** с такими же выходами

с) продукт реакции 15 не определяется по ТСХ

нитронатов **8** и силилкетенацеталя **3е** в аминогруппу, при этом соседний стереоцентр, образующийся в реакции C,C-сочетания, сохраняется, хотя этот факт не тривиален. Весьма благоприятно то, что из двух вариантов нитрозоацеталей лучшие результаты относятся к гидрированию аддуктов *силил*нитронатов, которые также удобнее и практичнее в получении по сравнению с аддуктами *этил*нитронатов.

Заключение

Используя циклические алкилнитронаты как модельные соединения с нитронатной функцией, мы нашли условия, при которых можно реализовать ее электрофильность с углеродными π-нуклеофилами. Реакцию с силилкетенацеталями удалось перенести на силилнитронаты и ациклические алкилнитронаты — производные типичных нитроалканов. Более того, в сочетание с нуклеофилами можно вовлекать нитроалканы напрямую, генерируя силилнитронаты *in situ*.

С такими ковалентными нитронатами, для которых нитроалканы являются очевидными и непосредственными предшественниками, этот процесс можно рассматривать не просто как свойство нитронатной функции самой по себе, но и более широко — как инструмент для обращения полярности (umpolung) нитроалканов.

Для продуктов новой реакции образования С,С-связи мы показали стереоселективность (без эпимеризации стереоцентра, образовавшегося на α-атоме нитроалкана) гидрирования продуктов в амины. Трансформация нитрогруппы аминогруппу является типичным завершением синтетических последовательностей со стандартным использованием нитроалканов ДЛЯ образования С,С-связи как α-нуклеофилов. Осуществление такой же трансформации после сборки углеродного скелета с обращенной полярностью нитроалканов (в качестве а-электрофилов) позволяет считать предлагаемую реализацию инверсии полярности полной степени комплементарной нитроалканов стандартной реакционной способности. Такая последовательность с общим выходом 83 % на две стадии представлена на схеме 15 (из материала диссертации, схемы 10 и 14).

Схема 15 Пример реализации общей схемы инверсии полярности нитроалканов.

Это позволяет на основании диссертационного исследования сформулировать общий подход к инверсии полярности нитроалканов, который представлен на схеме 16.

$$R^{2}$$
 R^{1} i R^{2} R^{1} Nu'_{C} R^{2} Nu_{C} R^{2} R^{2} Nu_{C} Nu_{C} R^{2} Nu_{C} R^{2} Nu_{C} R^{2} N

Схема 16. Общая схема инверсии полярности нитроалканов.

Предлагаемый подход состоит в трансформации нитроалканов в производные нитроновых кислот (нитронаты) с последующим взаимодействием с π -нуклеофилами в присутствии триалкилсилилтрифлата и гидрировании полученных аддуктов.

Выводы

- 1. Шести- и пятичленные циклические алкилнитронаты в присутствии триалкилсилилтрифлата присоединяют углеродные π -нуклеофилы (силиленоляты, силилкетенацеталь, енамин, металлилстаннан) по третьему положению кольца (по связи C=N)
- 2. Мягкие условия реакции позволяют выделять первичные аддукты нуклеофила и шести- и пятичленных циклических алкилнитронатов. В них наблюдается антиперипланарное (*транс*) расположение нуклеофила и неподеленной электронной пары азота, фиксированной в силу крайне медленной инверсии из-за кислородных заместителей при азоте. Таким образом можно прямо наблюдать стереохимические закономерности нуклеофильного присоединения к C=N двойной связи.
- 3. Силилнитронаты и этилнитронаты (ациклические алкилнитронаты), которые получают стандартными и эффективными методами напрямую из

- нитроалканов, также присоединяют силилкетенацетали по C=N-связи нитронатного фрагмента. Как следствие, нитроалканы в реакциях образования C,C-связи можно использовать в качестве α -электрофилов в очень мягких условиях, в том числе и непосредственно, с генерацией активного нитроната *in situ*. Такая полярность является инвертированной по отношению к стандартной реакционной способности нитроалканов.
- 4. Бис(окси)аминный (нитрозоацетальный) фрагмент аддуктов 9 силил- или этилнитронатов и силилкетенацеталя CH_2 =C(OMe)OTBS **3e**, в который переходит нитрогруппа исходного нитроалкана **7**, можно восстановить в аминогруппу без эпимеризации соседнего углеродного асимметрического центра, образующегося при нуклеофильном присоединении.

Основное содержание работы изложено в следующих публикациях:

- 1. Иоффе С. Л., Хорошутина Ю. А., Смирнов В. О., Михайлов А. А. Новый алгоритм обращения реакционной способности алифатических нитросоединений//Кинетика и катализ. -2018. том 59, № 6 с. 671-681. DOI 10.1134/S0453881118060096
- 2. Smirnov V. O., Khomutova Yu. A., Tartakovsky V. A., Ioffe S. L. C–C Coupling of Acyclic Nitronates with Silyl Ketene Acetals under Silyl Triflate Catalysis: Reactivity Umpolung of Aliphatic Nitro Compounds // Eur. J. Org. Chem. 2012. vol. 2012, №18. P.3374–3384 DOI: 10.1002/ejoc.201200239 3. Smirnov V. O., Sidorenkov, A. S., Khomutova Yu. A., Ioffe S. L., Tartakovsky V. A. Five-Membered Cyclic Nitronates in C–C Coupling with 1-(tert-Butyldimethylsilyloxy)-1-methoxyethylene // Eur. J. Org. Chem. 2009. vol. 2009, №24. P.3066-3074 DOI: 10.1002/ejoc.200900172
- 4. Smirnov V. O., Ioffe S. L., Tishkov A. A., Khomutova Yu. A., Nesterov I. D., Antipin M. Yu., Smit W. A., Tartakovsky V. A. New C−C Coupling Reaction of Cyclic Nitronates with Carbon Nucleophiles. Umpolung of the Conventional Reactivity of Nitronates // J. Org. Chem. − 2004. − vol.69, №24. − P.8485–8488 DOI: 10.1021/jo048944k
- 5. Smirnov V. O., Tishkov A. A., Ioffe S. L., Zatonsky G. V., Strelenko Yu. A., Smit W. A. New reaction of cyclic nitronates: C,C-cross coupling with silyl enolates // Mendeleev Communications. − 2002. − vol.12, № 3. − P.117–118. DOI: 10.1070/MC2002v012n03ABEH001596
- 6. Обращение традиционной реакционной способности алифатических нитросоединений в реакциях С,С-сочетания / В.О. Смирнов, Ю.А.

- Хомутова, С.Л. Иоффе // IX Научная школа-конференция по органической химии, 11-15 декабря 2006 г. Москва, 2006. С. 330. (сборник тезисов) Москва, 2003 с. 144 (сборник тезисов)
- 7. Обращение традиционной реакционной способности алифатических нитросоединений в реакциях С,С-сочетания / В.О. Смирнов, Ю.А. Хомутова, С.Л. Иоффе // II Молодежная конференция ИОХ РАН, 13-14 апреля 2006 г. Москва, 2006. с. 21 (сборник тезисов)
- 8. 1,2-Оксазин-N-оксиды «Обращенные нитросоединения»? / В.О. Смирнов, С.Л. Иоффе, А.А.Тишков, Ю.А. Хомутова, Ю.А. Стреленко, В.А. Смит, И.Д. Нестеров // Четвертый Всероссийский симпозиум по органической химии «Органическая химия упадок или возрождение?» 5-7 июля 2003 г.