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1 Introduction
Machine learning attempts to recover and describe empirical relationships in data. Often the interest
is in quantifying or attributing observed data to a predetermined set of categories. For example, how
does the price of an apartment depend on its location and parameters? Will the user want to read this
email? These questions can be answered based on historical data containing details of past transactions
or the history of user interaction with previously received emails. Attribution can also be of interest when
the attributes are not known in advance: is it possible, for example, to distinguish several distinctive
categories in the data?

At the same time, in applications there are problems in which the desired dependencies fall outside
the scope of the examples described above. If, for example, we are talking about a machine translation
task, then each text in the source language must be matched with a text in the target language. In this
case, it would be incorrect to represent the predicted translation as a number or an element of the set of
all possible translations. On the contrary, it would be convenient to represent the text as a sequence of
words, where the translation algorithm must predict each word, focusing both on the original sentence
and on neighboring words of the translation.

Variables in the data, represented as a set of mutually dependent values, are usually called struc-
tured. The area of machine learning devoted to the prediction of structured variables is called structured
prediction. A characteristic feature of structured variables is the combinatorial growth of the number
of possible values (outcomes) depending on the parameters of the problem. Ignoring the nuances of
the problem, in the machine translation example, with a dictionary size of w and a known translation
length l, the algorithm must choose among wl possible translations. This feature raises questions about
learning guarantees and efficient inference. Namely, how many examples are enough to reliably restore
the required dependence? How to quickly select an element from a possible set of outcomes? This work
is devoted to the study of these issues.

1.1 Relevance
As the area of machine learning application keeps spreading[56], the variety of tasks and problem setups
is also growing, making structured prediction more in demand. In particular, the deep learning devel-
opments have made it possible to bring algorithms for natural language processing and computer vision
to a qualitatively new level. In supervised learning problems where the target variables are structured
variables, learning is often reduced to minimizing the cross-entropy loss function. Such a loss function,
in turns, requires defining the distribution of a target structured variable. For example, in natural lan-
guage processing tasks, distribution over text outputs is introduced by factorizing the distribution into
word-level distributions according to the chain rule (for more details, see [23, Chapter 10]). Another
solution, common, for example, in the problem of semantic segmentation, is to assume that all elements
of a structured variable are independent given the input image (as, for example, done in [54]). Recent
studies are mostly devoted to the design of neural network architectures for parameterizing distributions
in the described approach, as well as scaling the described approach [8, 30, 72]. Structured outputs
prompted such key developments as recurrent [28, 62] and convolutional neural networks [22, 43], as well
as transformers [67] for sequence processing, UNet architecture for image processing [54].

The disadvantage of the above approach to structured prediction and deep learning in general is the
limited interpretability of the recovered dependencies. In the meantime, certain governmental regulators
introduce the "right to explanation"[68], according to which a person can demand an explanation of how
the machine learning system made a decision regarding him. Thus, the problem of interpreting machine
learning algorithms becomes especially acute with the development of deep learning systems. As a result,
a designated area of research has emerged, attempting to interpret specific architectures [69, 31, 52],
as well as to develop interpretation recipes for arbitrary machine learning algorithms [37, 51, 11]. At
the same time, the idea of using latent structured variables to increase the interpretability of machine
learning algorithms has gained popularity [32, 39]. Next, we describe the idea in more detail. Deep
neural networks comprise a sequence of elementary computing blocks, however the combined output of
these blocks is difficult to interpret. On the other hand, network evaluation may be more transparent if
some of these intermediate construction blocks have interpretable (structured) outputs, and the network
architecture itself takes into account the problem specifics. For example, in a sentiment analysis task
one can design a model that chooses a small subset of words, based on which the model will make a
prediction. In practice, the words chosen by such a model help to interpret the output. Besides that,
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neural networks with latent structured variables can be seen as an evolution of latent variable models
such as hidden Markov chains [12] or probabilistic context-free grammars [55] for modeling languages by
adding more expressive neural network models.

However, in the case of discrete latent variables, the standard training approaches based on back-
propagation is not applicable due to the non-differentiability of the block that returns the latent variable.
The solution to this problem usually comes down to heuristic gradient substitutes [4] or stochastic relax-
ation [29, 38, 5, 45]. One of the chapters of this work is devoted to the problem of learning with hidden
permutations. Another problem related to latent structured variables, which does not lose its relevance
to this day, is the design of architectures with latent variables and the choice of objective functions.
As previous work indicates [33, 16], end-to-end learning in such models often leads to predictive mod-
els that ignore hidden variables, learning the dependence only on the basis of standard neural network
components. The standard solution in this case is learning with partial labeling of latent variables: for a
subset of training samples, an additional loss function is introduced to encourage the desired prediction.
An alternative would be to choose an architecture that does not allow for sufficient prediction accuracy
without using the hidden variable [11].

Along with the development of practical approaches and algorithms for working with structural vari-
ables, it is important to obtain guarantees on the quality of their work. In the context of structured
prediction, the combinatorial growth in the number of possible predictions and the unequal contribution
of erroneous predictions (not all inaccurate predictions are equally bad) are the two factors that distin-
guish structured prediction from the well-studied classification setup [44]. Generalization in the context
of structured prediction is discussed in [17, 36]. In practice, target metric often does not coincide with
the functional being optimized during training (a surrogate loss function); a number of results on rela-
tionship between target and surrogate losses have been obtained for structural prediction problems. In
the paper [14], the authors showed the consistency of a class of quadratic surrogate loss functions, and the
paper [44] obtained an estimate for the discrepancy between the accuracy of the prediction according to
the target metric and the surrogate loss function. Later, [42] generalized these results to smooth convex
surrogate loss functions. The above works assume that the surrogate loss function is consistent, although
inconsistent surrogates are also often used in practice: for example, the multi-class support vector ma-
chine in the Crammer-Singer form [19], as well as its generalizations to structured variables [63, 65]. As
part of the study of inconsistent loss functions, this dissertation generalized the results [44] by obtaining
estimates for quadratic surrogate loss functions without the additional requirement of consistency.

1.2 Work Goals
As noted above, structured variables often arise in various machine learning applications. Prospective
problem setups may include structured target variables in the case of supervised learning, as well as
structured latent variables in both supervised and unsupervised setups. In addition to prediction quality
metrics, inference speed becomes a critical performance aspect as we shift to structured variables with a
combinatorial number of possible outcomes. The goal of this work was to develop structured prediction
methods that meet the requirements arising in applications: to develop structured prediction methods
for observed and latent structured variables, while emphasising algorithms with feasible inference time
and the availability of learning guarantees for the proposed methods.

Within the framework of the goals described above, the following tasks were set:

1. development prediction methods for such structural variables as permutations and subsets of a given
size,

2. study of consistency and derivation of learning guarantees for supervised learning tasks with a
structured target variable,

3. development and empirical analysis of models with latent structural variables,

4. development of efficient inference methods for structured latent variables

5. the use of latent structured variables for data interpretation, as well as the construction of inter-
pretable machine learning methods.

Contributions. When solving the tasks above, we obtained the following results.
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1. We developed and evaluated a gradient-based method to optimize over a set of permutations or
subsets.

2. In supervised structured prediction setup, we carried out analysis of quadratic surrogate loss func-
tions and quantified surrogate consistency in a novel setting.

3. We proposed and studied several approaches to recovering latent structured variables based on
maximum evidence principle and quadratic surrogate loss functions.

4. We proposed a number of efficient inference procedures for such latent structured variables as
permutations and fixed-size subsets.

5. We developed methods for interpreting data based on latent structured variables.

1.3 Practical Applications
The developed approach to permutation optimization is applicable for restoring the structure of the
relationship between variables in data, which, in particular, is in demand when interpreting machine
learning models. The prior distribution for convolutional neural network parameters offers a method
for rapidly adapting model parameters to a new adjacent data domain. The method for estimating the
parameters of a multi-user communication channel finds application in modern cellular networks. A
probabilistic model for preprocessing geophysical exploration data provides a convenient way to detect
anomalies and recover gaps in historical data.

1.4 Methodology
Our theoretical analysis of structured prediction is based on sections of probability theory, statistical
learning theory, and optimization. In a general structured prediction setup, we obtained a result ap-
plicable to a number of structured prediction problems. Other consideration are based on probabilistic
machine learning formalism, as well as the Bayesian approach to machine learning. The proposed meth-
ods are based on the basic sections of probability theory and stochastic optimization. Besides a few
rigorous proofs, this work mostly relies on the empirical evaluation methods. We implemented the pro-
posed algorithms in Python, assessed their performance and compared with analogues on synthetic and
real data sets.

1.5 Publications and Probation of the Work
First-tier publications:

1. Struminsky K., Lacoste-Julien S., Osokin A. Quantifying Learning Guarantees for Convex but
Inconsistent Surrogates //Advances in Neural Information Processing Systems. – 2018. – С. 669-
677. Contribution of the thesis author: A general lower bound on the calibration function in
structured prediction setup; calculation of the lower bound coefficients for hierarchical classification;
calculation of the lower bound coefficients for ranking.

2. Gadetsky, A., Struminsky, K., Robinson, C., Quadrianto, N., & Vetrov, D. P. (2020). Low-
Variance Black-Box Gradient Estimates for the Plackett-Luce Distribution. In AAAI (pp. 10126-
10135). Contribution of the thesis author: An approach to optimization over permutations and
acyclic graphs based on variational optimization for Plackett-Luce distributions; generalization of
the RELAX gradient estimator to the case of the Plackett-Luce distribution.

3. Atanov, A., Ashukha, A., Struminsky, K., Vetrov, D., & Welling, M. (2018, September). The
Deep Weight Prior. In International Conference on Learning Representations. Contribution of the
thesis author: Adaptation of the variational auto-encoder to the problem of estimating the prior
distribution on the parameters of the Bayesian neural network.

Standard-tier publications:
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1. Struminsky K. et al. A new approach for sparse Bayesian channel estimation in SCMA uplink
systems //2016 8th International Conference on Wireless Communications & Signal Processing
(WCSP). – IEEE, 2016. – С. 1-5. Contribution of the thesis author: Probabilistic model for
estimating the parameters of a multi-user communication channel; improved scheme for approxi-
mate inference of parameters of a multi-user communication channel and estimation of the channel
configuration.

2. Struminskiy K. et al. Well Log Data Standardization, Imputation and Anomaly Detection Using
Hidden Markov Models //Petroleum Geostatistics 2019. – European Association of Geoscientists
& Engineers, 2019. – Т. 2019. – №. 1. – С. 1-5. Contribution of the thesis author: A probabilistic
model for the preprocessing of geological and physical exploration data.

In all papers, with the exception of "The Deep Weight Prior" [1], the applicant is the main author.
Conference presentations and seminar talks:

1. Bayesian Deep Learning Workshop, NeurIPS 2019, Vancouver, Canada, 13 December, 2019.

Topic: Low-variance Gradient Estimates for the Plackett-Luce Distribution (spotlight presentation,
poster).

2. 8th International Conference on Wireless Communications and Signal Processing, Yangzhou, Chine,
13-15 Ocboter, 2016.

Topic: A new approach for sparse Bayesian channel estimation in SCMA uplink systems (oral
presentation).

3. Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), New York, USA, 7-12 Febru-
ary, 2020.

Topic: Low-Variance Black-Box Gradient Estimates for the Plackett-Luce Distribution (oral pre-
sentation, poster).

4. EAGE Conference on Petroleum Geostatistics, Florence, Italy, 2-6 September, 2019.

Topic: Well Log Data Standardization, Imputation and Anomaly Detection Using Hidden Markov
Models (oral presentation).

5. Thirty-second Annual Conference on Neural Information Processing Systems (NeurIPS 2018), Mon-
tral, Canada, 2-8 December, 2018.

Topic: Quantifying Learning Guarantees for Convex but Inconsistent Surrogates (poster).

6. Thirty-fifth Annual Conference on Neural Information Processing Systems (NeurIPS 2021), online,
6-14 December, 2021.

Topic: Leveraging Recursive Gumbel-Max Trick for Approximate Inference in Combinatorial Spaces
(poster).

7. Seventh International Conference on Learning Representations (ICLR 2019), New Orlean, USA,
6-9 May, 2019.

Topic: The Deep Weight Prior (poster).

8. Bayes Group Research Seminar, Moscow, Russia, 26 October, 2018.

Topic: Quantifying Learning Guarantees for Convex but Inconsistent Surrogates (oral presentation).

9. Sberbank Data Science Journey, Moscow, Russia, 10 November, 2018.

Topic: Quantifying Learning Guarantees for Convex but Inconsistent Surrogates (oral presentation,
poster).

10. Machines Can See: Computer Vision and Deep Learning Summit, Moscow, Russia, 25 June, 2019.

Topic: The Deep Weight Prior (poster).
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11. International Conference on Analysis of Images, Social Networks and Texts, AIST 2019, Kazan,
Russia, 17-19 Jule, 2019.

Topic: A Simple Method to Evaluate Support Size and Non-uniformity of a Decoder-Based Gener-
ative Model (oral presentation).

12. Advances in Approximate Bayesian Inference, NIPS 2016 Workshop, Barcelona, Spain, 2016.

Topic: Robust Variational Inference (poster).

2 Preliminaries

2.1 Structured Variables in Machine Learning
We start by introducing the concept of a structured variable. In machine learning, a structured variable
is an umbrella term for random variables, united by the following characteristic properties. Firstly, a
structured variable has a large number of possible values: the support of a random variable is typically a
finite set that cannot be quickly enumerated on a computer. Secondly, these variables are presented as a
set of mutually dependent random variables. The second property can act as a definition of a structured
variable. For clarity, we turn to specific examples below.

In applications, structured variables can act as a target variable in supervised problems (structured
prediction), and can also act as an auxiliary latent variable in models with latent variables.

One of the standard examples of a structured prediction problem is segmentation in computer vi-
sion [34]. In this case, the structured variable is the segmentation mask of an image. Segmentation mask
components are mutually dependent, since close points of an image with high probability correspond
to the same class. Other examples of structured prediction problems include ranking [10, 49], extreme
classification [13]. Many natural language processing tasks are also structured prediction tasks. A model
that produces a text output, whether it is a summation, a translation, or an answer to a question, must
predict a sequence of interdependent random variables. In deep learning, such models are defined by the
seq2seq architecture [62], and for prediction they use approximate search algorithms among all possible
options [50].

Before the spread of deep learning methods, structured variables were also in demand in natural
language processing tasks, often playing the role of auxiliary latent variables there [58]. For example,
early machine translation algorithms could rely on the input sentence parse tree to better convey the
sentence meaning. In this example, the structured variable is the sentence parse tree, and a separate
auxiliary model trained on different data could be used to build the tree.

However, these days machine learning solutions rarely rely on pipelines built with auxiliary models and
tasks. Instead, deep neural networks allow end-to-end learning, pre-training on unlabeled data [41, 20],
and knowledge transfer to small datasets [74]. As a result, end-to-end learning in models with latent
structured variables became a relevant research topic. Such models allow to take the best of both worlds:
on the one hand, the flexibility of neural networks, on the other hand, reliance on prior knowledge through
structured variables for better interpretability and more efficient use of data.

Popular models with latent structured variables include hidden Markov chains [48] with sequence
markup as a structured variable, probabilistic context-free grammars [15] with a parse tree as a structured
variable, and a temporal sequence classification model [25] with latent sequence segmentation mask. These
models are based on limiting assumptions on the model variables that are necessary for efficient learning an
inference. More recent approaches circumvent the limiting assumptions by relying on stochastic gradient
descent for end-to-end learning and fast amortized inference [45]. Some of the examples include models
with hidden parse trees [16], implicit feature subset selection [11], and hidden text generation order [27].

In the next section, we introduce a general supervised structured prediction setup.

2.2 Structured Prediction Basics
Let us first consider the standard structured prediction setup. Namely, consider a supervised learning
problem with inputs x ∈ X from an arbitrary set X , and the goal is to predict a structured variable y ∈ Y,
which takes values in a finite set Y. The data is distributed according to law D, and y is a realization of
a random vector Y with support Y ⊂ Rm. In general, the label of a training sample lie in a Ŷ, which
can differ from Y.
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To define a prediction algorithm, we define a function f : X → R|Y| that assigns a score to each
possible structure y ∈ Y and then chooses the optimal structure as a prediction

pred(f(x)) := arg max
y∈Y

fy(x). (1)

The difference between structured prediction setup and supervised learning setup is that the set of
possible outcomes Y is large due to the combinatorial growth of possible outcomes. For example, in
ranking, the outcome can be a permutation of elements, and when segmenting, a sequence of class labels.
Therefore, the model should offer a quick way to solve the problem 1 at inference stage. In addition, we
need to store function f in memory. Typically, one resorts to a low-rank parameterization of the function
f(x) = Fg(x), where F : Rd → R|Y| is a fixed linear operator and g(x) : X → Rd is a function with we
construct during training. Such a parameterization allows to reduce the memory footprint as we only
have to store a function with d � ‖Y‖ outputs and allows to design efficient algorithms for inference
task 1 that rely on the choice of matrix F . At the same time, the parameterization limits the set of
possible predictions, since the score vector f(x) lies within the linear span of the columns of the matrix
F = spanF . Below we refer to F as the set of feasible scores.

Given a loss function L(·, ·) : Y × Ŷ → R quantifying prediction quality, the goal is to find f that is
optimal in terms of risk (the expected value of the loss):

RL(f) := EX,Y L(pred(f(X)), Y ). (2)

Direct optimization of risk is often unfeasible (in particular, a finite sample approximation of RL(f) is
not differentiable with respect to f outputs). For optimization, we introduce an auxiliary (surrogate) loss
function Φ : Rk × Y → R and define the surrogate risk

RΦ(f) := EX,Y Φ(f(x), y). (3)

We emphasize that the function 3 takes the value of f(x) as an argument and makes gradient optimization
feasible, whereas the objective function 2 takes the predictions from a discrete set. Popular surrogate loss
functions include quadratic functions [14, 7], likelihood-based functions [34] and the surrogates arising in
variations of SVM [53, 65].

When replacing the objective function with a surrogate one, the question inevitably arises of the
relationship between the optimum of the surrogate loss function and the solution of the original problem.
To answer this question, the concept of consistency of a surrogate loss function was introduced [2]. The
concept is closely related to the concept of Fisher consistency [18, p.287]. Intuitively, a surrogate loss
function is consistent if the optimal f w.r.t. the surrogate risk is also optimal with respect to the original
risk.

Let us define consistency in terms of the calibration function that connects the surrogate and target
loss functions. For a score f ∈ F ⊆ Rk and a distribution q ∈ ∆k on a set of possible outcomes
Y ∼ q, we introduce the conditional risk l(f, q) := EY L(pred(f), Y ) and the conditional surrogate risk
φ(f, q) := EY Φ(f, Y ). The excess (surrogate) risk is the deviation of δl(f, q) (δφ(f, q)) from the optimal
risk

δl(f, q) := l(f, q)− inf
f̂∈F

l(f̂ , q) (4)

δφ(f, q) := φ(f, q)− inf
f̂∈F

φ(f̂ , q). (5)

Using these auxiliary functions, we define the calibration function.

Definition 1. For a loss function L, a surrogate loss function Φ, and a set of feasible scores F , the
calibration function HΦ,L,F (ε) at the argument ε ≥ 0 is equal to the surrogate risk infimum given the
target risk is not less than ε:

HΦ,L,F (ε) := inf
f∈F,q∈∆k

δφ(f, q) (6)

s.t.δl(f, q) ≥ ε (7)

Intuitively, the calibration function estimates how small the error of the surrogate loss function can
be for a fixed loss function value. When loss is high due to prediction error, a consistent surrogate loss
function should also return a high value. The following theorem connects the surrogate risk and the
target risk using the calibration function.
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Theorem 1 (Associating RL with RΦ through the calibration function). Let HΦ,L,F be the calibration
function for the loss function L and the surrogate loss function Φ, and let F be the set of feasible scores.
Let ˆΦ, L,F be a convex non-decreasing lower bound for the calibration function HΦ,L,F . Assume addi-
tionally that Φ is a continuous function bounded from below. Then for any ε > 0 such that ĤΦ,L,F is
finite and any score f ∈ F holds

RΦ(f) < inf
f̂∈F

Rφ(f̂) + ĤΦ,L,F (ε)⇒ RL(f) < inf
f̂∈F
RL(f̂) + ε. (8)

Next, we define η-consistency of a surrogate loss function, which is inspired by the above theorem.

Definition 2 (η-consistency of a surrogate loss function). A surrogate loss function Φ is consistent up
to the level η ≥ 0 (η-consistent) for the objective function L and the set of feasible scores F if and only
if the calibration function satisfies HΦ,L,F (ε) > 0 for any ε > η and there exists ε̂ > η such that that
HΦ,L,F (ε̂) is finite.

For η = 0, the above definition coincides with the notion of consistency common in the machine
learning literature [35, 47]. Thus, one can validate consistency of a surrogate loss by showing that the
calibration function is positive in the punctured neighborhood of ε = 0. However, in practice consis-
tency may not be sufficient to build realistic learning guarantees. As Osoking et al. [44] showed, for
various problems in structured prediction the theorem 1 delivers non-trivial guarantees only for practi-
cally unattainable surrogate risk values. It turns out that the scale of the calibration function plays an
important role as well.

The notion of η-consistency is crucial for the results presented in this work. First, it allows to obtain
learning guarantees in theorem 1 under a weaker assumption of inconsistent surrogate functions, that is,
not falling under the definition of 0-consistency. Second, we construct a tighter calibration function lower
bound for inconsistent surrogate losses and obtain a more optimistic learning guarantees.

2.3 Probabilistic Approach to Structured Prediction
The structured prediction setup in Section 2.2 used the language of probability to introduce assumptions
about the data and reformulate learning as an optimization task. In addition, the language of probability
is a convenient tool for defining non-deterministic prediction models and for modeling various modes of
uncertainty such as uncertainty in the choice of model and uncertainty in the prediction of a particular
model. Probabilistic machine learning is an approach to machine learning that relies on probability theory
to formulate and solve machine learning tasks. Next, we describe this approach in more detail, starting
from common examples of its application.

When formulating a problem within the framework of the probabilistic approach, the first step is to
choose a set of random variables appearing in the problem, as well as their joint distribution. Treating
the data as random variables, we describe the desired patterns by choosing the appropriate class of
distributions.

So, for example, when building a logistic regression model, the class label y ∈ Y = {−1, 1} is repre-
sented as a random variable Y with a Bernoulli distribution depending on the input object x ∈ X = Rd,
and probability PY (y | x; θ) = 1

1+exp(yθT x)
with parameters θ ∈ Rd. Following the assumptions about the

data, we assume that tuples of objects x and labels y are jointly independent (i.e., data is i.i.d.). Label
distribution allows to model the uncertainty in the prediction of the model, which may be due to lack of
data, the inflexibility of the model or the label being non-deterministic. If uncertainty also arises when
estimating the model parameters, the probabilistic approach allows us to consider the model parameters
as a random variable Θ as well. In the absence of any knowledge about the values of the Θ parameter,
its distribution can be assumed to be normal Θ ∼ N (| 0,diag σ), σ ∈ Rd with a diagonal covariance
matrix with parameters σ ∈ Rd. Assuming Θ ⊥⊥ Y , we get the joint distribution of Θ parameters and
Y labels. The interpretation of model parameters as random variables underlies the Bayesian approach,
allowing one to estimate the uncertainty in choosing model parameters using the posterior distribution
pΘ(θ | (xi, yi)ni=1;σ) for a data set of n objects.

Note that the above example did not make any assumptions about the distribution of the input x, as
they are not necessary when considering the classification problem. Such models are called discriminative.
At the same time, the probabilistic approach makes it possible to oppose discriminate models to generative
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ones, which also model the distribution of input objects. A classic example of a generative model is the
naive Bayes classifier. It is based on the joint distribution p(x, y | θ) := p(x | y; θ)p(y; θ), and when
classifying objects it relies on the conditional distribution p(y | x, θ).

In addition, the probabilistic approach allows you to introduce additional random variables, mak-
ing it possible to simplify the description of the desired dependencies. For example, Latent Dirichlet
Allocation[6] model for texts groups objects x ∈ X according to topics: for a text corpus, the model
defines a set of τ ∈ N topics, and then represents each individual text p(x | t) based on a vector of topics
t ∈ ∆T that are reflected in the text. An auxiliary random variable in this case is a set of topics in the
text t with a priori distribution pT (t). Since such auxiliary quantities are not reflected in the data, they
are commonly referred to as latent variables.

The choice of a joint distribution often leads to the choice of a training method. Among the possible
training methods, we distinguish two categories: in the case when the choice of model parameters is of
interest, the parameters can be obtained by maximizing the likelihood:

max
θ

log p({xi, yi}ni=1 | θ) (9)

If there are latent variables in the model, it is natural to consider the marginal likelihood instead. In the
literature, this approach is referred to as empirical Bayes or type-II maximum likelihood:

max
θ

log p({xi, yi}ni=1 | θ) (10)

log p({xi, yi}ni=1 | θ) = logET p({xi, yi}ni=1, T | θ). (11)

In the case when one of the hidden quantities is of interest, one can restore their characteristic values
based on the posterior distribution p(T | {xi, yi}ni=1, θ). In particular, the posterior distribution can
be used to solve the problem 10. It is often impossible to calculate the posterior distribution explicitly
in practice, and one of the common approaches to its approximation is the variational inference, which
reduces the task to the optimization problem

max
φ

ET log
p({xi, yi}ni=1, T | θ)

q(T | phi) , (12)

where the expectation is taken over the random variable T with the distribution q(· | φ), and the
optimization is performed over the distribution parameters φ.

The objective functions described above can be interpreted as surrogate loss functions introduced
using the probabilistic approach. Since surrogate functions eqs. (9), (10) and (12) do not depend on the
loss function L(·, ·) in any way, these objectives may be inconsistent. Besides that, in comparison with
the classical formulation of structured learning, the probabilistic approach allows to operate with latent
structured variables. This, in turn, allows to design and train in an "end-to-end" fashion prediction
models that involve auxiliary structured latent variables as intermediate components. For example, when
solving a discriminative task for texts, the parse trees of sentences can be incorporated as a hidden
auxiliary variable that provides additional information for the final prediction.

There are a number of general methods for solving the problems described above. In particular cases,
there exists an analytical solution for problems eqs. (9), (10) and (12). In the general case, when an
analytical solution is not available, approximate solution can be found using stochastic optimization
methods. Problem 9 can be reduced to stochastic optimization in the case when the parameter θ ranges
over a discrete structured set and we are unable to iterate through the whole domain containing θ. In
problems eqs. (10) and (12), stochastic optimization allows you to optimize the mathematical expectation
in the problem statement without resorting to its exact calculation. The two main approaches to con-
structing unbiased gradient estimates are the reparameterization trick and the REINFORCE algorithm.
For structured variables, the first is rarely applicable, and the second often requires careful tuning for
each problem.

Below we describe the two main approaches to estimating stochastic gradients. For the problem of a
form

max
θ

ET f(T ), (13)

where the random variable T has the distribution q(· | θ), the REINFORCE algorithm constructs an
unbiased gradient estimator by using the log-derivative trick

∇θET f(T ) = ET f(T )∇θ log q(T | θ), (14)
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which allows us to construct an unbiased gradient estimate based on a sample t of the random variable
T :

g(t, θ) = f(t)∇θ log q(t | θ). (15)

The estimate does not impose restrictions on the form of the function f , but requires an efficient algorithm
for generating t and computing log q(t | θ). The latter imposes additional restrictions on certain classes
of discrete structured variables, such as distributions based on exponential families. In practice, the
convergence of the algorithm can be hindered by the high variance of the estimate g(t, θ); as a result, the
algorithm requires additional control variates to mitigate the gradient variance.

The reparameterization trick allows us to estimate the gradients in 13 under the assumption that the
random variable T can be represented as T = h(U, θ) for a smooth f and a smooth with respect to the
second argument h and some random variable U . As the name suggests, the gradient estimate is obtained
by differentiating the expectation in a new parameterization

∇θET f(T ) = ∇θEUf(h(U, θ)) = EU∇θf(h(U, θ)), (16)

giving an estimate that depends on the sample u of U as

g(u, θ) = ∇θf(h(u, θ)) =
∂f

∂t

∣∣∣∣
t=h(u,θ)

∂h

∂θ
. (17)

Compared to estimate 15, the reparameterized estimate in practice has a lower variance, but imposes
additional restrictions on f and T as it involves derivatives. In particular, the estimate 17 is not directly
applicable to discrete variables, allowing estimation of gradients only for their continuous approximations.

3 Main Results
Below we cover the central results of the thesis.

3.1 General Methods
3.1.1 Permutation Prediction Based on Variational Relaxation

Our work [21] focuses on methods for approximate inference in the case when the structured hidden
variable T is a random permutation. We consider variational distributions within the Plackett-Luce
parametric distribution family.

Definition 3. A Plackett-Luce distribution with parameters θ1, . . . , θn is a distribution on permutations
with the probability of outcome t ∈ Sn equal to

PT (T = t; θ) =

n∏

i=1

exp θti∑n
j=i exp θtj

. (18)

Intuitively, the above formula corresponds to choosing n out of n elements without replacement, where
the probability of choosing the i-th element is proportional to exp θi. The distribution is also of interest
from the point of view of probabilistic relaxation of optimization problems. We replace the minimum
over the function arguments with the minimum of the average function value over the distribution family
parameters

min
t
f(t) ≤ min

θ
ET f(T ), (19)

where T has the Plackett-Luce distribution with parameters θ. This estimate smoothly depends on the
distribution parameters. Importantly, it is possible to find a set of parameters that leads to an arbitrarily
small gap in the above inequality. Indeed, when we scale the parameters θ′ = θ/τ by the temperature
τ approaching zero, the distribution tends to degenerate distribution. The distribution mode is the
permutation that arranges θ in descending order, since such sorting delivers the maximum of each factor
in formula 18. Therefore, if the sorting of the vector θ coincides with the optimal permutation of τ∗,
temperature scaling lead to an arbitrarily small gap.

Explicit formula for the outcome probability 18 and generation using sampling without replacement
allow using the REINFORCE [71] algorithm for approximate inference in the class of Plackett-Luce
distributions. However, the default algorithm converges slowly due to high variance, so as part of our
work, we adapted the RELAX [24] algorithm to obtain low variance gradient estimates.
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Definition 4. Let a discrete random variable T be a function T = H(Z) of a reparameterizable random
variable Z with parameters θ. Then the estimate

gRELAX(f) = [f(t)− cφ(z̃)]
∂

∂θ
logPT (T = t; θ) +

∂

∂θ
cφ(z)− ∂

∂θ
cφ(z̃) (20)

for a realization z of a random variable Z, a discrete variable t = H(z), and an independent realization
z̃ of a conditional random variable Z | T = t is an unbiased estimate of ET f(T ).

Initially, a similar estimate was proposed in [66], where cφ(·) was considered to be a smooth extension
of function f to the domain of Z, containing the domain of T . In the paper [24], the authors proposed
using an arbitrary cφ(·) (assuming differentiability with respect to the argument z and the parameters
φ) while adjusting the parameters φ as it is optimized to reduce the variance. Both papers considered
the case of a categorical distribution, while we generalized the method to the case of the Plackett-Luce
distribution.

Our generalization is based on the equivalent definition of the Plackett-Luce distribution [73].

Definition 5. Let Z1, . . . , Zn be independent random variables with the Gumbel distribution with the
corresponding parameters θ = (θ1, . . . , θn). Then the sorting of these random variables T has the Plackett-
Luce distribution:

P(zt1 ≥ · · · ≥ ztn ; θ) =

n∏

i=1

exp θti∑n
j=i exp θtj

. (21)

Thus, the random variable T can be represented as a deterministic function of Z, and in order to use
the bound 20, it suffices to find a reparameterization for the conditional distribution Z | T = t. In our
work, we propose an algorithm for reparameterization and efficient generation from this distribution:

Theorem 2. Consider mutually independent realizations of the uniform distribution v1, . . . , vn ∼ U [0, 1]
and realizations of the Gumbel distribution z1, . . . , zn with parameters θ1, . . . , thetan. Then for the
permutation t = arg sort(z1, . . . , zn) the vector z̃ = (z̃1, . . . , z̃n) defined as

z̃ti =

{
− log(− log(vi)) i = 1

− log
(

log vi∑n
j=i exp θtj

+ exp(−z̃ti−1
)
)

i ≥ 2
(22)

is a realization of the conditional distribution Z | T = t.

We studied the performance of the proposed method on the problem of finding a causal data structure,
considering several problem settings. First, we considered synthetic data generated from the Structured
Equation Model, [46]. To generate data, we chose a random directed acyclic graph G = (E, V ) with a
weighted adjacency matrix W ∈ Rn×n, and then generated data X ∈ Rn×N satisfying the equation

X = WTX + ε, (23)

where ε is homoscedastic Gaussian noise. This equation describes a linear dependence in which each
component of Xi depends on the parents of the vertex i in the graph G, as well as on the random noise.
The task was to restore the structure of the graph G from the data X.

To reduce the problem to the problem of inferring a permutation, we parameterized the desired
adjacency matrix W based on topological sorting: W = PAPT , where A ∈ Rn×n was a strictly upper
triangular matrix, and P was the permutation matrix for the topological sorting of the graph. For the
chosen parameterization, we solved the problem

min
P∈P

min
A∈A

1

2N
‖X − PAPTX}2F + λ‖ vec(A)‖1 = Q(P,A), (24)

where P is the set of permutation matrices and A is the set of strictly upper triangular matrices.
To optimize over the set of permutations, we switched to the probabilistic relaxation

min
θ

ET min
A∈A

Q(P (T ), A). (25)

We compared our method with the previously proposed Gumbel-Sinkhorn [40] and URS [26] algorithms
based on P permutation matrix relaxation. The table 1 shows the results of experiments for four families
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of graphs with 20 vertices. The algorithms proposed for comparison are significantly inferior to our
approach both in terms of the quality of optimization of the objective function and in terms of the
structural metrics SHD, SHD-CPDAG, and SID. We have also improved the Sinkhorn and URS algorithms
by adding additional optimization constraints, obtaining comparable results. A full description of this
experiment, as well as other experiments, can be found in the corresponding chapter of the thesis.

3.1.2 Learning Guarantees for Quadratic Surrogate Losses

In the paper [61] we analyzed surrogate loss functions with a specific focus on structured prediction.
The main theoretical result of the work is a strengthened lower bound on the calibration function for a
quadratic surrogate loss, which allows one to obtain non-trivial guarantees in the case when the surrogate
loss is not consistent.

Following the notation introduced in Section 2.2, we introduce a quadratic surrogate loss function

Φquad(f, y) :=
1

2k
‖f + L(:, y)‖22 =

1

2k

∑

ŷ∈Y

(
f2
ŷ + 2fŷL(ŷ, y) + L(ŷ, y)2 + L(ŷ, y)2

)
. (26)

As noted above, the prediction f is often parameterized using an additional matrix F : f(x) = Fg(x).
Earlier Osokin et al. [44] obtained a calibration function lower bound under the assumption that the
linear span F of the columns of the matrix F coincides with the linear span of the columns of the loss
function.

Theorem 3. For any loss matrix L, the corresponding quadratic surrogate Φquad, and the prediction
space F containing the columns of the matrix L, the calibration function HΦquad,L,F satisfies

HΦquad,L,F (ε) ≥ ε2

2kmaxi 6=j ‖PF∆ij‖22
≥ ε2

4k
, (27)

where PF is the orthogonal projection operator onto F and the vector ∆ij = ei − ej ∈ Rk, where ec
denotes c- th standard basis vector in Rk.

The latter inequality is trivial and leads to the estimate obtained by Ciliberto et al. [14]. On the other
hand, as F ( Rk decreases, the projection norm ‖PF∆ij‖22 drops, resulting in more accurate lower bounds
for the calibration function. The minimum set of scores that satisfies the conditions of the theorem is
F = spanL.

In our work, we have relaxed the constraint spanL ⊂ F , obtaining the following estimate.

Theorem 4. For any loss matrix L, the corresponding quadratic surrogate Φquad, and the prediction
space F , the calibration function HΦquad,L,F satisfies

HΦquad,L,F (ε) ≥ min
i 6=j

max
v≥0

(εv − ξij(v))2
+

2k‖PF∆ij‖22
, where ξij(v) := ‖LT (vIk − PF )∆ij‖∞, (28)

the operator PF defines an orthogonal projection onto F , the function (x)2
+ := [x > 0]x2 defines the right

branch of the parabola and ∆ij := ei − ej ∈ Rk, where ec denotes the cth standard basis vector in Rk.

Assuming v = 1 in the estimate introduced above, we can also obtain a simplified expression

HΦquad,L,F (ε) ≥ min
i 6=j

(ε− ξij)2
+

2k‖PF∆ij‖22
, where ξij := ‖LT (Ik − PF )∆ij‖∞. (29)

Importantly, for spanL ⊂ F the new lower bound 28 is at least as tight as the old one 27. Indeed, the
expression inside coincides with the old estimate for v = 1, but can deliver a tighter bound when v 6= 1.
In the case when F does not contain the columns of F , the lower one will be the envelope of the family of
curves with parameter v. Each of the curves is the right branch of a parabola shifted to the right. Near
zero, the lower bound is zero due to the inconsistency of the surrogate when F 6⊂ spanL. The leftmost
point with positive bound is equal to η =

ξij(v)
v and determines the level of consistency of the surrogate

in a broad sense.
In addition to deriving a general estimate, we calculate the constants in the inequality and analyze

several popular loss functions. As an illustration, we present the loss function mAP (mean average
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ER1

Val Q - Ql SHD SHD-CPDAG SID
PL-RELAX 15.7±27.3 14.4±5.3 16.0±6.2 61.0±48.7
SINKHORN_{ECP} 10.4±8.7 15.8±4.7 17.0±6.0 84.8±56.3
URS_{ECP} 27.5±34.2 20.6±6.3 21.4±7.2 96.8±74.6
SINKHORN 1651.2±3050.4 24.0±6.1 25.0±6.7 131.2±76.5
GREEDY-SP N/A 18.6±13.5 18.0±16.6 74.0±53.5
RANDOM 895.1±1270.3 37.8±5.2 38.8±4.9 146.8±79.9

SF1

Val Q - Q* SHD SHD-CPDAG SID
PL-RELAX -1.5±0.2 4.0±0.6 4.6±0.5 4.2±0.7
SINKHORN_{ECP} 1.9±4.3 6.6±2.2 6.6±2.4 10.4±5.0
URS_{ECP} 3.0±2.0 10.6±2.0 10.6±1.6 14.4±4.0
SINKHORN 38.3±26.2 19.0±0.0 19.0±0.0 35.0±2.4
URS 38.3±26.2 19.0±0.0 19.0±0.0 35.0±2.4
GREEDY-SP N/A 2.0±1.4 0.0±0.0 7.0±5.1
RANDOM 94.0±36.4 36.2±2.6 36.6±2.3 48.6±14.7

ER4

Val Q - Q* SHD SHD-CPDAG SID
PL-RELAX 468.8±208.4 71.0±5.9 72.6±3.9 289.6±9.1
SINKHORN_{ECP} 2519.0±3715.2 78.0±6.1 78.8±5.5 302.2±15.8
URS_{ECP} 1011.4±745.5 75.8±2.9 76.6±2.9 300.2±20.3
SINKHORN 126284.6±194386.3 88.8±6.0 91.0±5.7 330.0±14.1
GREEDY-SP N/A 103.4±10.9 105.6±10.5 288.6±14.7
RANDOM 109891.2±74968.7 113.0±4.9 114.4±4.1 330.6±9.2

SF4

Val Q - Q SHD SHD-CPDAG SID
PL-RELAX -5.8±1.2 20.0±4.3 20.0±4.1 48.4±16.2
SINKHORN_{ECP} -0.4±2.4 25.6±5.6 25.8±5.9 58.6±19.7
URS_{ECP} 8.5±11.8 30.2±5.8 30.6±5.2 72.2±25.0
SINKHORN 158.2±99.9 44.6±5.8 44.8±6.1 103.6±20.8
URS 140.7±140.6 42.0±5.4 42.8±5.1 89.8±20.4
GREEDY-SP N/A 50.6±31.5 49.8±32.3 69.0±43.2
RANDOM 635.5±182.6 98.2±6.1 99.2±5.5 168.8±29.6

Table 1: Метрики для графов из 20 вершин
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Figure 1: Left: consistent calibration function for FmAP ; right: inconsistent calibration function for Fsort

precision) used in ranking problems [10, 9, 49]. In this case, the model prediction σ ∈ Ŷ = Sr is a
permutation of r elements, and the labels y ∈ Y = {0, 1}r are binary vectors of length r. The loss
function LmAP (σ, y) averages the ranking accuracy for different recall levels:

LmAP (σ, y) := 1− 1

|y|
r∑

p:yo=1

1

σ(p)

σ(p)∑

q=1

yσ−1(q) = 1−
r∑

p=1

p∑

q=1

1

max(σ(p), σ(q))

ypyq
|y| . (30)

Above, the norm of a binary vector is |y| = ∑r
p=1 yp. The second expression for the loss matrix leads

to two natural definitions of F , which we present below. For the first parameterization, we define FmAP =

spanFmAP in terms of the linear span of the columns of the matrix FmAP ∈ Rr!×
1
2 r(r+1) with elements

(FmAP )σ,pq := 1
max(σ(p),σ(q)) . It follows from the definition of LmAP that spanLmAP = spanFmAP , and

the quadratic surrogate loss function is consistent. On the other hand, the derivation to this model
reduces to the integer quadratic programming problem maxσ∈Sr

(FmAP θ)σ, which is NP-hard. For the
second parameterization, we define Fsort = spanFsort as the linear span of the matrix Fsort ∈ Rr!×R with
elements (Fsort)σ,p := 1

σ(p) . In this parameterization, inference task maxσ∈Sr
(Fsortθ)σ is equivalent to

sorting the elements of θ, which makes the second parameterization preferable to the first. On the other
hand, Fsort does not contain the columns of the matrix LmAP , which makes the quadratic surrogate
inconsistent.

The figure 1 shows the graphs of the estimates described above for the loss function LmAP . Due to the
inconsistency of the surrogate loss function, the graph for Fsort is zero up to a certain ε > 0. At the same
time, for some values of ε, the calibration function lower bound for Fsort turns out to be higher than the
calibration function lower bound for FmAP . In practice, this means that for lower optimization precision,
our bound provides stronger learning guarantees for the parameterization Fsort with the efficient inference
algorithm.

3.2 Applications
3.2.1 Structured Priors for Convolutional Neural Network Kernels

Our work [1] proposes to interpret the parameters of a convolutional neural network as a structured la-
tent variable. Compared to basic Bayesian neural networks, the structured prior distribution of network
parameters takes into account dependencies between individual weights of convolutional filters. In exper-
iments, the proposed modification improved the classification quality in a setup with a limited training
set, allowed to speed up network training, and allowed to extract low-dimensional data representations
without additional training.

Bayesian neural network is a discriminative model at the intersection of Bayesian methods of machine
learning and deep learning. The joint distribution

p(y1, . . . , yn, θ | x1, . . . xn) =

[
n∏

i=1

p(yi | xi, θ)
]
p(θ) (31)

on class labels y1, . . . , yn and model weights θ typically consists of a set of independent distributions for
each individual weight p(θ) =

∏
j p(θj) and the likelihood of the label p(yi | xi, θ) given the input object xi

and the weights θ. For prediction the model combines the weights posterior distribution p(θ | {xi, yi}ni=1)
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Figure 2: Left: Trained convolutional network filters. Right: filters obtained from approximation.

the label distribution p(yi | xi, θ) into a posterior predictive distribution:

p(ytest | {xi, yi}ni=1, xtest) =

∫
p(ytest | xtest, theta)p(θ | {xn, yn}Nn=1)dθ. (32)

In practice, the posterior distribution is approximated via variational inference, i.e. by solving the problem

max
φ

[
EΘ log p(y1, . . . , yn | Θ, x1, . . . , xn)−KL(q(Θ;φ)||p(Θ))

]
, (33)

where the expectation is taken with respect to the variational distribution with density q(θ;φ) and
parameters φ. The assumption of the independence of the parameters in the prior distribution simplifies
the parameterization of the model. However, the weights of the convolutional filters of a trained neural
network do not behave like independent random variables. Qualitatively, the weights smoothly change
depending on the location in the filter (Figure 2 illustrates the argument). Moreover, in applications, the
trained parameters of the convolutional network can be used in a new task on a similar domain [74, 57].
For example, in the case of images, ImageNet-trained convolutional networks can be adapted to other
computer vision tasks.

We consider the distribution of convolutional filters on a certain domain. We propose an empirical
approximation to the distribution. In particular, we train several convolutional networks on an auxiliary
task in the same domain. The auxiliary task must be representative of the given domain: training
examples must be diverse, and the network representations must be sufficiently informative. In this work,
we considered image classification, the auxiliary task was a classification task with a different training set
and a different set of labels. Having trained several convolutional networks, we can build an empirical
approximation of filter distribution. However, there are two problems with empirical approximation.
First, to work with the distribution, it is necessary to store many convolutional networks in memory.
Secondly, the density required to calculate the objective function of the Bayesian neural network is not
available for the approximation. Therefore, we propose to approximate the distribution of filters using
an auxiliary generative model based on a variational auto-encoder.

When training, we propose to replace the prior distribution of p(W ) with an estimate obtained on
the basis of a variational auto-encoder. Thus, we arrive at a lower bound on the marginal likelihood

log p({yi}ni=1 | {xi}ni=1) ≥ EΘ

[
log p({yi}ni=1 | Θ, {xi}ni=1) (34)

+ EZ log
p(Θ | Z;χ)p(Z)

r(Z | Θ;ψ)
(35)

− log q(Θ;φ)] , (36)

where q(Θ;φ) is a variational approximation of the network parameters, the distributions of p(Θ | Z;χ)
and r(Z | Θ;ψ) are determined by the variational auto-encoder , and the expectation with respect to the
random vector Z is calculated with respect to the distribution r(Z | Θ;ψ). When training a Bayesian
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Figure 3: Classification quality depending on the size of the training sample. Left: MNIST, right:
CIFAR-10.

neural network, we will use this estimate as an objective function. The first term in the estimate corre-
sponds to the standard cross-entropy loss function, and the second term pulls the approximate posterior
distribution q(Θ;φ) towards the empirical prior distribution of the convolutional network parameters for
the given domain p(Θ).

To evaluate the proposed approach, we conducted a series of experiments that evaluated the learning
ability with limited training data, the representations the network obtains after the initialization from
the prior distribution, and the learning time depending on the weight prior distribution. Here we restrict
ourselves to the first experiment, a detailed description of the others can be found in the corresponding
chapter.

While studying Bayesian network training with limited data, we considered the classification problem
on MNIST and CIFAR-10. As a model, we took convolutional networks consisting of several convolutional
layers along with several fully connected output layers. For convolutional layers, we trained the prior
distribution on NotMNIST and CIFAR-100 data. We trained the fully connected layers with backprop-
agation without resorting to variational inference. For comparison, we considered the prior distributions
for network parameters common in the literature: the Gaussian distribution and the log-uniform dis-
tribution, among which the latter guarantees the invariance of the prior distribution to the scale of the
parameters.

For the three prior distribution families we trained classifiers with varying sizes of training data.
As Figure 3 shows, the network with the proposed prior distribution performs better. On the MNIST
data, the difference in quality disappears when the training sample size is sufficient. On CIFAR-10 data,
the quality is uniformly higher. We assume that the difference can be explained by the simplicity of
the classification task on the MNIST data: thousands of examples are enough to extract the necessary
information from the data.

3.2.2 Bayesian Estimation of Multiple Access Channel Configuration

Probabilistic Model. In the paper [60], we consider the problem of estimating the parameters of
a multi-user communication channel. To establish a connection on dedicated frequencies, users send
special code signals, which are then received and processed by a cellular communication station. The
communication channel is multi-user, so some frequencies can be occupied by several users and the system
must be able to detect users by receiving a superposition of the sent code signals. In practice, to simplify
the task, it is assumed that there are quite a few users.

In fact, the problem can be interpreted as a structured prediction problem, where, based on the
received signals, it is necessary to choose a sparse binary vector with a block structure. Standard solutions
are based on modifications of compressed sensing algorithms. The work [70] proposed an approach based
on Bayesian linear regression. Bayesian linear regression allows finding sparse solutions to linear systems
of equations, which is required in this problem. In our work, we adapted the standard Bayesian linear
regression model to the specifics of the problem, taking into account the block structure of the desired
solution, and also proposed a faster algorithm for solving the task.

Mathematical model of the communication process is a system of linear equations

y = κθ + z, (37)
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where the vector y corresponds to the received signal, the matrix κ is fixed and specified by the com-
munication protocol, the vector θ is unknown and describes the channel configuration, and z models the
noise that occurs during signal transmission. As a noise model, we used a Gaussian distribution with a
known variance ρ. In addition, the vector θ has a block structure

θ = (c11t1, . . . , c1Qt1, c21t2, . . . , c2Qt2, . . . , cN1tN , . . . , cNQtN ), (38)

where the binary variables t1, . . . , tN ∈ {0, 1} are equal to one if the user is active, and the values
c11, . . . , cNQ ∈ R reflect the physical parameters of the communication channel. Within this model, we
are primarily interested in recovering the t1, . . . , tN values that indicate active users in the channel. In
addition, we are also interested in estimating the vector θ, since it contains signal fading parameter.

To solve the problem, we consider a Bayesian linear regression model with the following joint distri-
bution

p(y, θ; ρ, γ) = p(y | θ; ρ)p(θ; γ) (39)
p(Y = y | Θ = θ; ρ) = N (y | κθ; ρI) (40)

p(Θ = θ; γ) = N (θ | 0,diag(γ1, . . . , γ1︸ ︷︷ ︸
Q

, . . . , underbraceγN , . . . , γNQ)). (41)

The density p(Y = y | Θ = θ; ρ) specifies the observations likelihood, and p(Θ = θ; γ) specifies the prior
distribution with the block structure. Note that in the previously proposed works, the basic regression
model was used, which did not take into account the block structure of the prior distribution.

To estimate the channel configuration, we maximize the evidence p(y; ρ, γ) with respect to the prior
distribution parameters γ. Similarly to [70], we use the EM -algorithm for the derivation, alternately
estimating the posterior distribution p(θ | y, ρ, γ) at the E-step and maximizing the evidence estimate
with respect to γ at the M -step. At the M -step, we use the iterative scheme proposed in [64]. For
our problem, the scheme improved the inference speed in model experiments compared to the previously
considered schemes [70].

Simulation results. We ran a simulation to evaluate the performance of the proposed scheme. We
compared reconstruction error of a model with a custom probabilistic model and the improved iterative
scheme against the solution proposed in [70]. We used the Rayleigh fading model to model the signal
amplitude, considered a channel with 6 active users out of N = 36, each using Q = 5 frequencies. We
used Zadov-Chu sequences of length 20 to construct the codebook matrix κ. The graph 4 shows the
dependence of the average proportion of incorrectly identified users UDER = E

[
frac

∑N
n=1[ân 6= anN

]

on the number of iterations of the EM -algorithm for different signal-to-noise ratio levels in the com-
munication channel. In all four cases, the proposed scheme converges faster than the original scheme.
Moreover, for high noise levels, the original scheme does not converge on average. The graph 5 shows
the dependence of the average Θ estimation error on the number of iterations of the EM -algorithm. As
in the previous experiment, the proposed scheme shows the best convergence. It is noteworthy that in
terms of the MSE metric, the original scheme achieves comparable results even for high noise levels.

3.3 Pre-processing of Geological Survey Data with Hidden Markov Chains
Probabilistic model. The last chapter focuses on the analysis of geological survey data. In our
work [59], we adapt the hidden Markov chain to the task of pre-processing and imputation for missing
data in well logging. The Hidden Markov Chain is one of the classic probabilistic models with a latent
structured variable: the hidden variable is given by a Markov chain with discrete states, the observations
are independent under given the hidden variable, and the EM -algorithm is used to tune the parameters
and infer the hidden variable.

In the first stages, the goal of a geological survey is to build a model of the deposit. The model is based
on number wells drilled on the territory of the field, the survey data is collected with a number of sensors
that are lowered into each well. As you move deeper, the sensors read different physical characteristics of
the well depending on the depth. The acquired data form sequences referred to as "logs". Then, based
on this data, an expert petrophysicist labels segments of wells that are of interest from the viewpoint of
field development. To produce the labels the expert also performs data alignment, additional calibration
and anomaly search.
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Figure 4: Dependence of the UDER (user detection error) on the number of iterations of the EM algorithm
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Figure 5: Dependence of the Θ communication channel parameters estimation error on the number of
iterations of the EM algorithm
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The goal of this study is to automate data processing steps of an expert petrophysicist. The results of
the work of experts accumulated over many years make it possible to solve well labeling as a supervised
learning task, however, the predictions of experts are subjective and may not provide an insufficiently
reliable training signal. Therefore, we considered an unsupervised learning setup that could provide
consistent predictions across all the wells.

Next we describe the proposed probabilistic model. Let x1, . . . , xK be logs for for K wells, xk ∈ Rlk×d.
For each well at a given depth level, the sensor reading is primarily determined by the soil characteristics.
We assume that soil characteristics can be described by a sequence of m states of a Markov chain. To
define the Markov chain we introduce random vectors T 1, . . . , TK , T kl ∈ {1, . . . ,m}, l = 1, . . . , Lkk, initial
distribution P (T k1 = t;π) ∝ πk, π ∈ Rm+ and consecutive pair distributions P (T kl = t | T kl−1 = s; τ) ∝
τts, τ ∈ Rm2

+ . The dependence of the elements of the chain allows to promote identical states for adjacent
segments. Continuous segments of the chain with a constant latent state correspond to homogeneous
sections of the well, along which soil characteristics do not change. In practice, soil characteristics are
unknown, so the Markov chain acts as a latent variable in the model. However, we know the sensor
readings in the logs. We assumed that for each type of soil, the sensor readings follows the multivariate
Gaussian distribution p(xkl | T kl = t;µ,Σ) = N (xkl | µt,Σt), µ ∈ Rm×d,Σ ∈ Rm×d2 .

Besides that, sensor readings are affected by instrument calibration prior to recording. Assuming that
sensor calibration can be represented as a linear transformation of the readings xkl = αk � x̂kl + βk for
a given observation xkl and a calibrated observation x̂kl , we introduce additional calibration parameters
α ∈ RK×d∗ , β ∈ RK×d for each well. For the parameters Θ = (π, τ, α, β), the final observational model is

p(xi, ti
K

i=1; Θ) = (42)
K∏

k=1

[(πtk1

Lk∏

l=2

τtkl tkl−1
)× (43)

Lk∏

l=1

N (xkl | αk � µtkl + βk,diag(αk)Σtkl diag(αk))]. (44)

To tune the model parameters, we use the Baum-Welch algorithm to maximize the evidence lower
bound of the model. We maximize the lower bound with stochastic gradient descent, starting from a
hand-crafted initialization to avoid local optima. Since the observations in the model follow the Gaussian
distribution, we could incorporate data with gaps using marginal distributions as a likelihood, without
taking into account the missing data. We used the Viterbi algorithm to predict the hidden states of
the circuit. Below we present the results of the model operation on synthetic fields, as well as on the
Priobskoye field [3].

Empirical results. We started with a synthetic field, for which we both have measurements for
wells, and the ground truth labels for soil types. As a result, we were able to qualitatively compare the
hidden states of the Markov chain with the ground truth labels, thus eliminating the factor of subjective
data interpretation by an expert. On the left, the graph 6 contains the logs (blue lines) as well as the
predictions of our model (green line). While we were able to accurately replicate the behavior of the logs,
we did not get a one-to-one correspondence between latent states and soil types. The ground truth labels
and hidden states of the well is shown in the graph 6 on the right. The selected number of latent states
exceeded the number of soil types: increasing the number of latent states improves the approximation of
logs, but makes the latent states less interpretable. On the graph 7 we have shown the correspondence
between latent states and soil types throughout the field. Most of the latent states correspond to the
argillite prevailing in the deposit. The model was also able to separate tight rocks and sandstones, but
none of the hidden states correspond to siltstone.

We then applied the model to pre-process the data at the Priobskoye field. The base model predicted
reservoir layers (layers of interest in terms of oil production) using a binary classification based on a
recurrent neural network [3]. In the base model, instrument readings were standardized to account for
miscalibration. We, in turn, calibrated the reading using the calibration parameters α, β obtained with a
hidden Markov model instead of standardizing the data. The new pre-processing algorithm did not give
a significant improvement in the quality of the prediction, increasing the F1 score from 0.72 to 0.74.

Next, we used the model to fill the gaps in the data. We considered test wells for which there are
no ILD (deep induction log) and LLD (lateral log) log values in the sample. We then compared two gap
recovery strategies: replacing the log with the average across the field, and our approach of restoring
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Figure 6: An illustration of how the model works for one well. Left: Example of observed logs (blue) and
their approximation (green); right: expert labels compared to the found states of the Markov chain.

Figure 7: Correspondence between soil types and hidden states of the Markov chain
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the log from the rest of the logs using a Markov chain. The proposed solution improved the prediction
quality for the considered wells from F1=0.37 to F1=0.56. Thus, the proposed approach allows us to
improve the quality of finding reservoir layers due to joint calibration and recovery of gaps in the data.

4 Conclusion
The results described above cover various aspects of structured prediction, including theoretical analysis of
the standard structured prediction setup, models with latent structured variables based on a probabilistic
approach, as well as applications of the described solutions to real problems. In conclusion, we briefly
summarize the presented results.

1. We proposed a permutation optimization method based on probabilistic relaxation and the RE-
INFORCE algorithm; we developed control variates to improve the convergence of the method.
We evaluated the method on the problem of identifying causal links in data, where the topological
sorting of a directed acyclic link graph acts as a structured variable. The proposed method sig-
nificantly improved structure reconstruction metrics in comparison with relaxation-based gradient
optimization methods. Since the considered optimization method does not introduce additional
assumptions about the objective function and is actually a zero-order optimization method, in the
future it can also be used for direct optimization of the objective function in structured prediction
problems (without using auxiliary surrogate loss functions), as well as for amortized inference of
permutations.

2. In a supervised structured prediction setup, we analyzed a training approach based on quadratic
surrogate loss functions. In particular, we considered the case of inconsistent surrogate loss function,
for which we obtained guarantees for the accuracy of the expected risk optimization. Assuming
a fixed number of training samples and early optimization stopping, the analysis delivers tighter
upper bounds on the expected risk values. From a practical point of view, the above formulation
also leads to more efficient inference algorithms.

3. We considered a number of applications based on a probabilistic approach to structured prediction.
First, we applied the variational auto-encoder model to infer the parameters of a convolutional
neural network based on a priori knowledge about the network parameter distribution for a given
domain. In this case, the parameters of the convolutional filters act as a latent structured variable,
and the proposed approach improves the prediction accuracy of Bayesian neural networks for similar
domains. Second, we considered the task of estimating the parameters of a multi-user communica-
tion channel, where the subset of active users acts as a hidden structured variable. In this case, we
proposed an improved probabilistic model to estimate the structured variable, and accelerated the
inference algorithm. Finally, we proposed a probabilistic model based on hidden Markov chains to
model and interpret geophysical survey data. The proposed model uses structured variables, in this
case the Markov chain hidden states, to infer and cluster the physical characteristics of the wells
while modeling the joint distribution of these characteristics. Based on the reconstructed hidden
states, we proposed an approach to data imputation and anomaly detection.
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Abstract. Learning models with discrete latent variables using stochastic gradient descent remains a
challenge due to the high variance of gradient estimates. Modern variance reduction techniques mostly
consider categorical distributions and have limited applicability when the number of possible outcomes
becomes large. In this work, we consider models with latent permutations and propose control variates
for the Plackett-Luce distribution. In particular, the control variates allow us to optimize black-box
functions over permutations using stochastic gradient descent. To illustrate the approach, we consider a
variety of causal structure learning tasks for continuous and discrete data. We show that our method out-
performs competitive relaxation-based optimization methods and is also applicable to non-differentiable
score functions.
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Abstract

Learning models with discrete latent variables using stochas-
tic gradient descent remains a challenge due to the high vari-
ance of gradient estimates. Modern variance reduction tech-
niques mostly consider categorical distributions and have lim-
ited applicability when the number of possible outcomes be-
comes large. In this work, we consider models with latent per-
mutations and propose control variates for the Plackett-Luce
distribution. In particular, the control variates allow us to opti-
mize black-box functions over permutations using stochastic
gradient descent. To illustrate the approach, we consider a va-
riety of causal structure learning tasks for continuous and dis-
crete data. We show that our method outperforms competitive
relaxation-based optimization methods and is also applicable
to non-differentiable score functions.

Introduction
The vast majority of modern machine learning advance-
ments share one central method - gradient-based optimiza-
tion. Stochastic gradients give a scalable solution for learn-
ing, applicable when the loss function is too slow to com-
pute due to the size of data or even intractable. The latter
is often the case when the loss function includes an expec-
tation over random latent variables. The objectives of this
kind naturally arise in multiple settings, including proba-
bilistic latent variable models (Neal and Hinton 1998) and
reinforcement learning (Williams 1992). Often the distribu-
tion of random variables also depends on the optimizable pa-
rameters of the loss function, which in turn makes gradient
estimation harder and less reliable due to the high variance
of stochastic gradients.

Despite the recent breakthroughs in gradient estimation
for continuous latent variables (Kingma and Welling 2013;
Rezende, Mohamed, and Wierstra 2014; Mohamed et al.
2019), gradient estimation for discrete latent variables re-
mains a challenge. Currently, general-purpose estimators
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(Williams 1992; Mnih and Gregor 2014) remain unreli-
able and the state-of-the-art methods (Tucker et al. 2017;
Grathwohl et al. 2018; Yin and Zhou 2018) exclusively con-
sider the categorical distribution. Although the reduction to
the categorical case allows benefiting from gradient estima-
tors for continuous relaxations, such solutions are hard to
translate to discrete distributions with large support.

In this work, we consider a gradient estimator for the
Plackett-Luce distribution, a distribution over permutations.
Permutations naturally occur in various setting, such as
ranking problems (Guiver and Snelson 2009), optimal rout-
ing (Bello et al. 2016) and causal inference (Friedman and
Koller 2003). However, the support of the distribution is su-
perexponential in the number of items k, which makes repre-
senting a distribution as a categorical distribution intractable
even for dozens of items. At the same time, the Plackett-
Luce distribution has O(k) parameters and allows sampling
in O(k log k).

We translate the recent variance reduction techniques
(Tucker et al. 2017; Grathwohl et al. 2018) to the case
of Plackett-Luce distributions. Similarly to REBAR, we
use the difference of the REINFORCE estimator and the
reparametrized estimator for the relaxed model. In partic-
ular, we derive the conditional marginalization step (Tucker
et al. 2017) for the Plackett-Luce case. In our experiments,
we recast causal inference tasks as a variational optimization
over permutations and solve it using a gradient optimization
method. We show that our method outperforms competitive
relaxation-based approaches for optimization over permuta-
tions (Grover et al. 2019; Mena et al. 2018) for differentiable
score functions and is applicable in a wider range of scenar-
ios.

Our main contributions are the following:

• We derive a low-variance gradient estimator for the
Plackett-Luce distribution.

• We apply the gradient estimator to solve variational op-
timization tasks for black-box functions and concentrate
primarily on causal inference tasks for continuous and
discrete data.

• For differentiable functions, we show that relaxation-
based gradient optimization does not work out-of-the-box
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for causal inference tasks and propose additional con-
straints to achieve competitive results.

A Brief Tour of Gradient Estimation
We consider a general optimization task minθ Ep(b|θ)[f(b)],
where b is a discrete random variable parametrized by θ. The
expectation can be intractable, for instance when b is a vector
of categorical variables and the support of b is exponential
in the vector length. The standard solution is to construct a
stochastic estimate for the gradient ĝ(f) := ∂

∂θEp(b|θ)[f(b)]
without explicitly computing the expectation. In this section,
we briefly review the gradient estimation algorithms.

REINFORCE
The REINFORCE estimator (Williams 1992) gives us a
widely-applicable unbiased estimate for the gradient

ĝREINFORCE(f) = f(b)
∂

∂θ
log p(b | θ), b ∼ p(b | θ). (1)

Although an unbiased gradient estimate is sufficient to guar-
antee convergence of stochastic gradient descent, in prac-
tice, the algorithm may not converge due to the high vari-
ance of the estimate (Tucker et al. 2017). The variance of the
REINFORCE estimator can be reduced using control vari-
ates. A Control variate is a function c(b) with a zero mean
Ep(b|θ)[c(b)] = 0 that can be used to define another unbiased
estimator

ĝCV(f) = ĝREINFORCE(f)− c(b). (2)

The variance of the new estimator ĝCV(f) is lower than the
variance of ĝREINFORCE(f) if c(b) is positively correlated
with the random variable f(b). As an illustration, the gra-
dient of probability ∂

∂θ log p(b | θ) has zero mean, therefore
it can be used as a control variate (Mnih and Gregor 2014).

Reparametrization Gradients for Continuous
Relaxations
The reparametrization trick (Kingma and Welling 2013;
Rezende, Mohamed, and Wierstra 2014) is an alternative un-
biased low-variance gradient estimator, applicable when f is
differentiable and the latent variable bcont is continuous. The
estimator represents the latent variable as a differentiable de-
terminisitc transformation bcont = T (v, θ) of a fixed distri-
bution sample v and parameters θ and estimates the gradient
as

ĝreparam(f) =
∂

∂θ
f(bcont) =

∂f

∂T

∂T

∂θ
, (3)

vi ∼ uniform[0, 1], i = 1, . . . , k. (4)

Although the reparametrization trick is not applica-
ble when the latent variable b is discrete, (Jang, Gu,
and Poole 2016; Maddison, Mnih, and Teh 2016) pro-
posed the Gumbel-softmax estimator, a modification of the
reparametrization trick for the relaxed categorical distribu-
tion.

To sample from a relaxed categorical distribution p(b | θ)
with probabilities exp θi∑

j exp θj
, Gumbel-Softmax first samples

a vector of independent Gumbel random variables zi ∼
G(θi, 1), i = 1, . . . , k

zi = T (θi, vi) = θi − log(− log(vi)) (5)
vi ∼ uniform[0, 1], i = 1, . . . , k (6)

with location parameter θ. According to the Gumbel-max
trick (Maddison, Tarlow, and Minka 2014), the index of
the maximal element H(z) = arg max(z) is a categor-
ical random variable with distribution p(b | θ). Then,
to make the sampler differentiable, the Gumbel-softmax
trick replaces arg max(z) with a relaxation soft max(z) =

1∑
exp zi

(exp z1, . . . , exp zk). The gradient estimate is the
reparametrization gradient for the relaxed categorical distri-
bution:

ĝGumbel(f) =
∂

∂θ
f(b) =

∂f

∂b

∂b

∂z

∂z

∂θ
, (7)

b = soft max(z), (8)
zi ∼ G(θi, 1), i = 1, . . . , k. (9)

The resulting reparametrization gradient ĝGumbel(f) has
much lower variance than ĝREINFORCE(f), but is generally
biased due to the relaxation.

Relaxation-based Control Variates
Recently, Tucker et al. (2017) and Grathwohl et al. (2018)
proposed control variates for REINFORCE estimator based
on the relaxed conditional distribution. Both works use the
REINFORCE gradient estimator for the relaxed categorical
distribution as a control variate for the non-relaxed estima-
tor. To eliminate the bias of the REINFORCE estimator, they
subtract the low-variance reparametrization gradient estima-
tor.

The key insight of Tucker et al. (2017) is the conditional
marginalization step used to correlate the non-relaxed RE-
INFORCE estimator and the control variate. Importantly, the
conditional marginalization relies on reparametrization trick
for the conditional distribution p(z | b, θ), obtained from
the joint distribution p(b, z | θ) = p(b|z)p(z | θ) of the
Gumbel random vector z and the output of the Gumbel-max
trick b = H(z) = arg max(z). Tucker et al. (2017) derive a
reparametrizable sampling scheme for p(z | b, θ)

z̃i =

{
− log(− log vi) i = b

− log
(
− log vi

exp θi
+ exp(−z̃b)

)
i 6= b

, (10)

where vector v is a uniform i.i.d. vector v ∼ uniform[0, 1]k.
This gives a two-step generative process for the distribution
p(z | b, θ). On the first step we sample the maximum vari-
able vb from the Gumbel distribtuion and on the second step
we sample the other variables vi, i 6= b from the Gumbel
distribution trunctated at z̃b with location parameter θi.

The unbiased RELAX estimator from Grathwohl et al.
(2018) is

ĝRELAX(f) =[f(b)− cφ(z̃)]
∂

∂θ
log p(b | θ)

+
∂

∂θ
cφ(z)− ∂

∂θ
cφ(z̃) (11)

b = H(z), z ∼ p(z | θ), z̃ ∼ p(z | b, θ) (12)
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where cφ(z) is a parametric function optimized to reduce the
variance of the estimator.

Similarly, for a differentiable function f the REBAR es-
timator by Tucker et al. (2017) uses the function f with the
relaxed argument soft max(z) and tunes the scalar parame-
ter η

ĝREBAR(f) =[f(b)− ηf(soft max(z̃))]
∂

∂θ
log p(b | θ)

+ η
∂

∂θ
f(soft max(z))

− η ∂
∂θ
f(soft max(z̃)) (13)

b = H(z), z ∼ p(z | θ), z̃ ∼ p(z | b, θ) (14)

Constructing Control Variates for the
Plackett-Luce Distribution

In this paper, we extend the stochastic gradient estimators
ĝREBAR(f) and ĝRELAX(f) from the categorical distribution
to the Plackett-Luce distribution. With a slight abuse of no-
tation, below we use letter b to denote an integer vector
b = (b1, . . . , bk) ∈ Sk that represent a permutation, θ to
denote the parameters of the Plackett-Luce distribution and
p(b | θ) to denote the Plackett-Luce distribution.

The goal of this section is to define the two components
required to apply the aforementioned gradient estimators:
the mapping b = H(z) and the two reparametrizable con-
ditional distributions p(z | θ) and p(z|b, θ). After this we
apply the estimators as defined in eq. 11 and eq. 13, but to
emphasize the difference we refer to them as PL-RELAX
and PL-REBAR.

Definition 1. The Plackett-Luce distribution (Luce 2005;
Plackett 1975) with scores θ = (θ1, . . . , θk) is a distribu-
tion over permutations Sk with the probability of outcome
b ∈ Sk

p(b|θ) =

k∏

j=1

exp θbj∑k
u=j exp θbu

. (15)

Intuitively, a sample from the Plackett-Luce distribution b =
(b1, . . . , bk) is generated as a sequence of samples from cat-
egorical distributions. The first component b1 comes from
the categorical distribution with logits θ, then the second
components b2 comes from the categorical distribution with
the logits θ without the component θb1 and so on.

The Plackett-Luce can be used for variational optimiza-
tion (Staines and Barber 2012). Indeed, at the lower tem-
peratures θ → θ

T , T � 1 the distribution converges to a
divergent distribution. The mode of the Plackett-Luce dis-
tribution is the descending order permutation of the scores
b0 : θb01 ≥ · · · ≥ θb0k , because b0 permutation maximizes
each factor in the product in eq. 15.

Now we will give an alternative definition of the Plackett-
Luce distribution.

Lemma 1. (appears in (Grover et al. 2019; Yellott Jr 1977))
Let z be a vector of k independent Gumbel random variables

with location parameters specified by score vector θ

zi = θi − log(− log(vi)), vi ∼ uniform[0, 1]. (16)

Then for a permutation b ∈ Sk the probability of event
{zb1 ≥ · · · ≥ zbk} is

p(zb1 ≥ · · · ≥ zbk) =

k∏

j=1

exp θbj∑k
u=j exp θbu

. (17)

Similarly to the Gumbel-max trick, Lemma 1 shows
that an order of a Gumbel-distributed vector is distributed
according to the Plackett-Luce distribution. Following the
lemma, for Plackett-Luce distributions we define p(z | θ)
to be a Gumbel-distributed vector and H(z) to be a sorting
operation

zi ∼ G(θi, 1), i = 1, . . . , k (18)
H(z) = arg sort(z) (19)

Our principal discovery is that, similarly to the categori-
cal case, the conditional distribution p(z|b, θ) factorizes into
a sequence of truncated Gumbel distributions. As a conse-
quence, the distribution is reparametrizable and can be used
to construct a control variate for a gradient estimator.

Proposition 1. Let p(b, z | θ) be the joint distribution
with zi ∼ G(θi, 1), b = arg sort(z) and normalized pa-
rameters

∑k
j=1 exp θj = 1. Then for uniform i.i.d samples

vi ∼ uniform[0, 1] and Θi =
∑k
j=i exp θbj for i = 1, . . . , k

the vector z̃ = (z̃1, . . . , z̃k)

z̃bi =

{
− log(− log vi) i = 1

− log(− log vi
Θi

+ exp(−z̃bi−1
)) i ≥ 2,

(20)

is a sample from the conditional distriubtion p(z | b, θ).

The proof of the proposition is given in the appendix.
The sampling procedure from Proposition 1 has two prin-

cipal differences from the sampling scheme for the categor-
ical case (see eq. 10). First, the truncation parameter z̃bi−1

now depends on the previous component i − 1, while for
the categorical case the truncation parameter is defined by
the maximum component. Second, the location parameter is
now a cumulative sum and depends on the previous scores.

Related Work
Jang, Gu, and Poole; Maddison, Mnih, and Teh (2016;
2016) use the Gumbel distribution and Gumbel-max trick
to define continuous relaxations of discrete distributions,
by providing a gradient estimator which replaces the sam-
pling of a categorical distribution with a differentiable sam-
ple from a Gumbel-Softmax distribution.

The Gumbel-Softmax distribution does not scale to per-
mutations, as distribution over k-dimensional permutations
is equivalent to that over k! categories. Recently, a line of
work proposed various for optimization over permutations.
Linderman et al. (2018) relaxes the discrete set of permu-
tations to Birkhoff polytope, the set of doubly-stochastic
matrices, and extend stick-breaking approach (Sethuraman
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Figure 1: Training curves and log-variance of gradient estimators for different estimators on a toy problem: Ep(b|θ)‖Pb−P0.05‖2F

1994) to satisfy polytope constraints. Mena et al. (2018) ob-
tain doubly-stochastic matrices by applying the Sinkhorn
operator. They use the Gumbel-Softmax distribution to
define a distribution over latent matchings, the implicit
Gumbel-Sinkhorn distribution. Grover et al. (2019) define
new relaxation to the set of unimodal row-stochastic matri-
ces, the set of matrices that have a unique maximal element
in every row.

Grathwohl et al. (2018) extend Tucker et al. (2017) and
derive control variate for black-box function optimization
combining the REINFORCE estimator and reparametriza-
tion trick. Yin and Zhou (2018) propose gradient estimator
that estimates the gradients of discrete distribution parame-
ters in an augmented space.

For the special case of TSP, (Bello et al. 2016; Kool, van
Hoof, and Welling 2018) introduce an amortized family of
distributions over permutations using a deep autoregressive
model and design control variates that exploit the structure
of the loss function.

Experiments
We demonstrate the effectiveness of the proposed method
with a simple toy task similar to Tucker et al. (2017)
and then continue to the more challenging task of op-
timization over topological orderings for solving causal
structure learning problems. Our PyTorch (Paszke et al.
2017) implementation of the gradient estimators is avail-
able at https://github.com/agadetsky/pytorch-pl-variance-
reduction .

Toy Experiment
As a proof of concept we perform an experiment in min-
imizing Ep(b|θ)‖Pb − Pt‖2F = Ep(b|θ)f(Pb) as a function
of θ where p(b|θ) = Plackett-Luce(b|θ). Pb is permutation
matrix with elements pi,bi = 1 and Pt is a matrix with
1
k + t on the main diagonal and 1

k − t
k−1 in the remaining

positions. This problem can be seen as linear sum assign-
ment problem with specifically constructed doubly stochas-

tic matrix Pt. It is easy to note that taking k = 2 and
t = 0.05 leads to toy problem similar to that of Tucker
et al. (2017). We focus on t = 0.05 and k = 8 to enable
computation of exact gradients. For the PL-REBAR estima-
tor we take cφ(z) = ηf(σ(z, τ)) where σ(z, τ) is the con-
tinuous relaxation of permutations described by Grover et
al. (2019). For the PL-RELAX estimator we take cφ(z) =
f(σ(z, τ)) + ρφ(z) where ρφ(z) is a simple neural network
with two linear layers and ReLU activation between them.
Figure 1 shows the relative performance and gradient log-
variance of REINFORCE, PL-REBAR and PL-RELAX. Al-
though the REINFORCE estimator is unbiased, we can see
that the variance of the estimator is too large even for the
simple toy task, therefore the method is completely inap-
plicable for optimization over permutations. On the other
hand, the proposed method significantly reduces variance of
the gradient and thus converges to optimal. Also, similarly
to the toy experiment from Grathwohl et al. (2018) paper,
we observe better performance of the PL-RELAX estimator
due to free-form control variate parameterized by a neural
network.

Causal Structure Learning Through Order Search
Directed acyclic graph (DAG) models are popular tools for
describing causal relationships and for guiding attempts to
learn them from data. Learning the structure of a DAG re-
mains challenging because of the combinatorial acyclicity
constraint. A common way to model causal relations is a
structural equation model (SEM). Let X be k-dimensional
random variable, then relations are described as follows:

Xi = fi(Xpa(i), εi), (21)

where pa(i) is the set of parent vertices of variable Xi and
εi is independent noise. Edge set {∪ki=1 ∪j∈pa(i) j −→ i}
describes DAG G on k vertices associated with joint distri-
bution PG(X) =

∏k
i=1 P(Xi|pa(Xi)). The basic structure

learning problem can therefore be formulated as follows: let
X be data matrix consisting of n i.i.d. samples of random
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Table 1: Results for ER and SF graphs of 10 nodes
ER1 ER4

Val Q̂− Q̂∗ SHD SHD-CPDAG SID Val Q̂− Q̂∗ SHD SHD-CPDAG SID

PL-RELAX -0.2±1.7 5.2±2.5 5.8±3.2 13.0±9.6 12.2±26.3 29.4±1.9 35.0±4.4 67.0±1.8
SINKHORNECP 1.8±5.3 5.6±2.7 6.4±2.9 14.2±10.2 4.8±10.4 31.2±2.6 33.6±2.7 69.6±2.3
URSECP 13.5±26.9 7.4±3.7 7.4±3.6 16.0±8.9 12.4±6.2 29.8±3.6 32.8±4.9 67.4±2.1
SINKHORN 85.9±101.2 12.0±3.7 12.0±3.7 29.4±17.3 4019.6±3138.0 36.6±2.4 37.8±1.7 79.8±6.9
URS 71.4±128.9 10.8±2.9 11.0±3.2 26.0±10.5 1894.9±1704.8 34.6±2.2 36.8±2.8 74.4±2.7
GREEDY-SP N/A 2.2±2.9 2.4±3.9 8.8±15.4 N/A 29.8±1.1 35.4±5.0 71.6±3.8

RANDOM 122.3±184.3 18.8±2.5 18.8±2.6 27.2±14.3 10078.2±10770.5 25.4±3.2 33.0±4.5 65.8±5.9
SF1 SF4

Val Q̂− Q̂∗ SHD SHD-CPDAG SID Val Q̂− Q̂∗ SHD SHD-CPDAG SID

PL-RELAX -0.7±0.3 2.2±1.5 2.4±1.5 2.6±2.2 -1.3±1.4 8.2±3.1 8.8±3.3 15.4±5.9
SINKHORNECP 0.6±2.9 2.8±3.2 3.0±3.2 7.6±12.3 -0.3±4.0 6.6±1.5 7.0±1.8 11.8±4.0
URSECP 1.6±1.8 5.0±1.7 5.4±2.2 7.0±2.2 2.1±2.3 12.8±2.5 13.4±2.2 24.8±5.6
SINKHORN 22.6±22.4 9.0±0.0 9.2±0.4 17.4±3.8 232.4±251.8 17.2±2.8 17.6±3.4 34.4±9.9
URS 10.1±5.2 9.6±1.2 9.6±1.2 14.6±2.1 69.6±81.6 14.6±1.4 14.6±1.2 29.2±5.8
GREEDY-SP N/A 0.8±0.4 0.0±0.0 2.8±1.6 N/A 5.0±9.5 4.2±9.4 11.0±12.7

RANDOM 35.4±22.4 17.2±2.6 18.0±2.6 23.6±6.4 240.3±251.0 34.4±2.6 35.6±2.2 31.4±11.2

Table 2: Results for ER and SF graphs of 20 nodes
ER1 ER4

Val Q̂− Q̂∗ SHD SHD-CPDAG SID Val Q̂− Q̂∗ SHD SHD-CPDAG SID

PL-RELAX 15.7±27.3 14.4±5.3 16.0±6.2 61.0±48.7 468.8±208.4 71.0±5.9 72.6±3.9 289.6±9.1
SINKHORNECP 10.4±8.7 15.8±4.7 17.0±6.0 84.8±56.3 2519.0±3715.2 78.0±6.1 78.8±5.5 302.2±15.8
URSECP 27.5±34.2 20.6±6.3 21.4±7.2 96.8±74.6 1011.4±745.5 75.8±2.9 76.6±2.9 300.2±20.3
SINKHORN 1651.2±3050.4 24.0±6.1 25.0±6.7 131.2±76.5 126284.6±194386.3 88.8±6.0 91.0±5.7 330.0±14.1
URS 1189.4±1815.5 26.4±8.4 26.6±8.6 134.2±75.0 7179677.6±7874489.3 93.0±3.8 94.4±4.5 328.0±11.5
GREEDY-SP N/A 18.6±13.5 18.0±16.6 74.0±53.5 N/A 103.4±10.9 105.6±10.5 288.6±14.7

RANDOM 895.1±1270.3 37.8±5.2 38.8±4.9 146.8±79.9 109891.2±74968.7 113.0±4.9 114.4±4.1 330.6±9.2
SF1 SF4

Val Q̂− Q̂∗ SHD SHD-CPDAG SID Val Q̂− Q̂∗ SHD SHD-CPDAG SID

PL-RELAX -1.5±0.2 4.0±0.6 4.6±0.5 4.2±0.7 -5.8±1.2 20.0±4.3 20.0±4.1 48.4±16.2
SINKHORNECP 1.9±4.3 6.6±2.2 6.6±2.4 10.4±5.0 -0.4±2.4 25.6±5.6 25.8±5.9 58.6±19.7
URSECP 3.0±2.0 10.6±2.0 10.6±1.6 14.4±4.0 8.5±11.8 30.2±5.8 30.6±5.2 72.2±25.0
SINKHORN 38.3±26.2 19.0±0.0 19.0±0.0 35.0±2.4 158.2±99.9 44.6±5.8 44.8±6.1 103.6±20.8
URS 38.3±26.2 19.0±0.0 19.0±0.0 35.0±2.4 140.7±140.6 42.0±5.4 42.8±5.1 89.8±20.4
GREEDY-SP N/A 2.0±1.4 0.0±0.0 7.0±5.1 N/A 50.6±31.5 49.8±32.3 69.0±43.2

RANDOM 94.0±36.4 36.2±2.6 36.6±2.3 48.6±14.7 635.5±182.6 98.2±6.1 99.2±5.5 168.8±29.6

Table 3: Results for ER and SF graphs of 50 nodes
ER1 ER4

Val Q̂− Q̂∗ SHD SHD-CPDAG SID Val Q̂− Q̂∗ SHD SHD-CPDAG SID

PL-RELAX -1.8±1.3 19.2±6.9 20.6±7.8 103.2±55.5 1863.1±1703.2 220.6±42.8 221.4±43.5 1779.6±193.1
SINKHORNECP 5.5±7.0 30.0±6.3 30.8±5.8 151.8±35.1 43463.9±70904.3 221.0±14.7 223.2±15.2 1846.4±158.3
URSECP 10.3±4.7 41.0±2.4 40.0±2.7 177.6±17.1 22997.9±38346.1 239.4±31.6 240.2±31.5 1789.8±154.4
SINKHORN 90.3±35.8 49.6±4.3 49.6±4.3 275.0±42.5 231304.8±290019.0 248.6±18.5 250.4±19.1 1966.8±135.5
URS 90.3±35.8 49.6±4.3 49.6±4.3 275.0±42.5 546793216.7±984510739.7 320.2±26.8 320.8±27.1 2119.0±130.5
GREEDY-SP N/A 38.2±21.6 38.2±24.6 151.6±84.3 N/A 525.6±35.5 526.8±34.7 1951.4±50.3

RANDOM 271.0±71.6 99.4±9.3 99.8±9.5 301.2±60.4 477442.0±661243.9 360.8±23.5 361.0±23.2 2175.0±52.6
SF1 SF4

Val Q̂− Q̂∗ SHD SHD-CPDAG SID Val Q̂− Q̂∗ SHD SHD-CPDAG SID

PL-RELAX -3.9±0.5 11.4±3.3 11.8±2.9 14.4±2.7 -1.1±7.6 70.0±9.9 70.6±11.2 219.0±20.3
SINKHORNECP 25.1±18.2 28.6±6.5 28.4±6.1 58.4±12.1 124.3±126.0 94.4±22.7 95.6±23.0 257.2±25.8
URSECP 32.1±44.3 33.4±10.2 33.6±10.7 55.6±32.7 164.4±53.1 110.6±12.8 111.4±13.7 319.6±18.1
SINKHORN 138.2±68.2 49.0±0.0 49.0±0.0 110.6±5.5 10238.2±15850.1 139.0±8.3 139.6±8.1 387.0±37.2
URS 138.2±68.2 49.0±0.0 49.0±0.0 110.6±5.5 7966.9±4838.0 142.8±11.8 144.2±12.1 527.4±86.8
GREEDY-SP N/A 38.8±39.3 35.4±39.6 54.8±20.6 N/A 381.2±76.2 384.2±77.0 963.0±475.7

RANDOM 380.1±207.8 97.8±7.3 97.8±7.3 155.4±31.2 10109.8±2027.0 312.0±14.9 312.4±15.0 807.0±101.7
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variable X . Also let D be space of DAGs. Then, given ob-
servations X the task is to find DAG G ∈ D or so-called
Bayesian Network for joint distribution P(X):

min
G∈D

Q(G,X) (22)

where Q is function that scores DAG G given data.
To incorporate permutations in the objective (22) we con-

sider parametrization of DAG adjacency matrix using nilpo-
tent matrices which are upper triangular in basis induced
by topological ordering, namely WG = PAPT where A
is strictly upper triangular adjacency matrix which describes
parent sets of variables and permutation matrix P which de-
scribes topological ordering. Then optimization over DAGs
can thus be seen as an optimization over topological order-
ings

min
P∈Pk

Q̂(P,X), (23)

where Q̂ scores topological ordering P and Pk is the set
of permutation matrices of size k. Optimization over A is
usually hidden in the computation of Q̂. It is worth noting
that this approach is similar to order MCMC (Friedman and
Koller 2003), however our work considers gradient-based
optimization over permutations matrices rather than discrete
order changes.

Continuous data We consider linear additive noise
SEMs:

X = WTX + ε (24)

where W = PAPT and non-zero elements of A describe
linear coefficients and parent sets for each variable Xi.

As score function Q̂ we take regularized mean squared
loss combined with sparsity-inducingL1 regularization term

Q̂(P,X) = min
A∈A

1

2n
‖X − PAPTX‖2F + λ‖ vec(A)‖1,

(25)
where A is the set of strictly upper triangular matrices. Com-
puting Q̂ itself involves optimization problem, which can
be efficiently solved using accelerated proximal gradient for
convex composite function optimization (Nesterov 2013).
To apply the proposed method, we reformulate (23) as varia-
tional optimization with respect to parameters of a Plackett-
Luce distribution:

min
θ

E
p(b|θ)

Q̂(Pb,X) (26)

where p(b|θ) = Plackett-Luce(b|θ), and Pb is a permutation
matrix with pi,bi = 1. For variational optimization, we only
apply PL-RELAX and treat Q̂(P,X) as a black-box func-
tion to avoid unrolling the optimizer to compute gradients.

As a concurrent approach, we consider work by Mena et
al. (2018) which proposes relaxing optimization over a set
of permutations to a set of doubly-stochastic matrices us-
ing the Sinkhorn operator. Another recent work by Grover
et al. (2019) proposes relaxation to the set of unimodal
row-stochastic matrices (URS) which intersects the set of

doubly-stochastic matrices and contains the set of all per-
mutation matrices. Since these methods can’t be used to op-
timize black-box functions we reformulate (26) as:

min
φ

min
A∈A

1

2n
‖X−P (φ)AP (φ)TX‖2F +λ‖ vec(A)‖1 (27)

where φ are the parameters of the corresponding relaxation.
We optimize (27) coordinate-wise using gradient descent
with respect to φ and accelerated proximal gradient opti-
mization with respect to A. We refer to the optimization of
this objective as SINKHORN or URS according to the used
relaxation.

We also try an alternative approach for the above relax-
ations. Since P (φ) is not a permutation matrix during train-
ing we extend (27) with an orthogonality constraint and re-
place ‖vec(A)‖withHµ(vec(PAPT )) whereHµ is the Hu-
ber relaxation ofL1 norm and µ is a hyperparameter control-
ling tightness of relaxation:

min
φ

min
A∈A

1

2n
‖X − P (φ)AP (φ)TX‖2F+

+ λHµ(vec(P (φ)APT (φ)))

s. t. ‖P (φ)PT (φ)− Ik‖2F = 0

(28)

We use an Augmented Lagrangian (Nemirovski 1999) to
solve this equality constrained optimization problem (ECP)
(28) and refer to the solutions as SINKHORNECP or
URSECP correspondingly.

We simulated graphs from two well-known random graph
models with different degree distributions: Erdos-Renyi ran-
dom graphs and Scale-free networks with k and 4 k ex-
pected number of edges, denoted by ER1, ER4, SF1, SF4 re-
spectively. Given a random acyclic graph we assigned edge
weights independently from U([−2;−0.5] ∪ [0.5; 2]) to ob-
tain weight matrix W . To generate data matrix X we follow
generating process of linear SEM (24) with standard Gaus-
sian noise.

As a sanity check, we also introduce a simple baseline. We
generate Erdos-Renyi random graphs with the correspond-
ing expected number of edges and refer to it as RANDOM
baseline. For comparison, we also include the Greedy Sparse
Permutation (Greedy-SP) algorithm (Solus et al. 2017). This
algorithm casts DAG structure learning as a linear program-
ming problem with graph sparsity as the linear objective
function, and a sub-polytope of the permutohedron as the
feasible region. Whilst this algorithm also searches permu-
tations as a proxy to DAGs to reduce the size of the search
space, it is in essence a constraint-based method - rather than
optimising a DAG score function, it searches for the sparsest
DAG which satisfies the conditional independence relations
found. Conversely, our gradient-based method does not rely
on these conditional independence tests, which typically re-
quire the simplifying assumptions of CI tests, and is able to
use linear as well as non-linear objective functions (e.g. in
the discrete data experiment, the quotient normalized maxi-
mum likelihood score is non-linear and non-differentiable).

For each method we report the score difference Q̂ (25) be-
tween learned and ground truth DAGs on additionally gen-
erated validation samples Xval, as well as three DAG met-
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rics from causal inference literature. The quoted score differ-
ence shows the effectiveness of our method for optimizing
the chosen score function, while the DAG metrics show how
well it performs on the problem itself. Structural hamming
distance (SHD) is the number of edge additions, removals,
and reversals required to get from the learned structure to
the ground truth. Multiple DAGs can represent the same set
of conditional independence relations, forming a Markov
equivalence class; this can be represented by a completed
partially directed acyclic graph (CPDAG). We also report
SHD-CPDAG - the SHD between the CPDAG the learned
structure belongs to and that of the true structure. Structural
interventional distance (SID) (Peters and Bühlmann 2013)
quantifies the distance between two DAGs in terms of their
respective causal inference statements. This gives an indica-
tion of accuracy of computed interventions using the learned
graph.

We consider graphs of 10, 20 and 50 nodes.
For PL-RELAX we take the mode of the distribution af-

ter training. For SINKHORN relaxation we apply the Hun-
garian algorithm to find the closest permutation matrix. For
URS we use the argmax permutation property to obtain the
permutation matrix. Regularization coefficient λ is set to 0.5
for all methods.

Tables 1-3 show the performance of all methods for vary-
ing number of nodes k averaged across 5 random seeds (the
error ranges represent standard deviation). We can see that
the proposed method outperforms baselines in the majority
of settings. Also, it is worth mentioning that SINKHORN
and URS perform poorly in terms of score function values
due to the fact that the optimization is carried out over the
set of relaxed matrices. This leads to deterioration in score
value Q̂ when relaxation is transformed to permutation. As
we can see there is no such problem with ECP versions of re-
laxations, though they perform worse than PL-RELAX and
require additional constrained optimization techniques to be
applied. Also, one more observation should be explained:
PL-RELAX almost always ends up with better solutions in
terms of score function than the ground truth DAG, there-
fore solves the optimization problem well. However, it is not
ideal in terms of metrics. Peters and Bühlman (2014) proved
that given enough data, it is possible to identify the ground
truth DAG if data was generated from linear SEM with
Gaussian homogeneous noise. Authors used L0-regularized
mean squared error score function, but it is non-convex and
hard to optimize, therefore L1-regularization is used in prac-
tice. Because of relaxation of the L0 norm and finite amount
of data all guarantees vanish, and we observe inconsistency
between the metrics of interest and values of the surrogate
score function Q̂.

Discrete data Due to the discrete and nonlinear nature of
categorical data, it cannot be modeled with the SEM de-
fined previously. Discrete variable networks can however
be modeled as generated by sampling each node’s condi-
tional probability table, depending only on the configura-
tion of its parent nodes. In the standard general form this
is Xi = fi(Xpa(i)), where fi is assumed to be multinomial,

thus

fi(Xpa(i)) ∼Multinomial(ΘXi |Pa(Xi))

where ΘXi |Pa(Xi) are the conditional probabilities
θi,j,k = P (Xi = k|Pa(Xi) = j).

Rather than learning the optimal A for a given P by min-
imising a training loss, we can therefore instead try to max-
imise the marginal likelihood based on the above model

Q(P,X) = max
A∈A

P (X|A,P ) (29)

which can be found using the factorisation

P (X|A,P ) =

d∏

i=1

qi∏

j=1

P (Xi,pa(i)=j ;α). (30)

As a result of the decomposition of the score by node in
equation (30), the maximum a posteriori (MAP) parent set
can be selected from the set of parents permitted by the topo-
logical ordering for each node, independently of the rest.
Due to the ordering, the graph resulting from combining
each of these MAP parent connections is guaranteed to be
acyclic, thus the exact MAP DAG for a given ordering can
be found. Due to the combinatorial size of even this reduced
search space, the set of permitted parents for a given node
is reduced further, to only those that cannot be easily proven
to be conditionally independent - as determined by a stan-
dard constraint-based method (in this case the PC-stable al-
gorithm (Colombo and Maathuis 2014)). As this finds the
exact solution for a reduced search space, the result is an
approximation of the best score possible for the ordering.
Whilst this provides an approximate score for any given or-
der, it is a non-differentiable black-box function; therefore
whilst our method can be applied to this permutation op-
timization, options are severely limited - the SINKHORN
and URS methods used for continuous SEM graph bench-
marks for example cannot be used. For a simple evaluation,
Table 4 shows the result of our method on data sampled from
the standard ALARM network compared against random or-
ders, and permutations optimized by order MCMC (Fried-
man and Koller 2003), all using the same MAP DAG method
described above, maximizing the quotient normalized max-
imum likelihood score (Silander et al. 2018). Higher Val
Q̂−Q̂∗ is better, other metrics lower is better. Whilst Table 4
shows our algorithm to be less effective than MCMC for this
task, the comparison is not particularly favorable - MCMC
is performed directly on permutations, rather than attempt-
ing to learn the Plackett-Luce distribution over permutations
- thus the MCMC simply attempts to find a good local min-
imum in the score space. To give a lower bound to perfor-
mance, we also compare to the MAP DAGs of 1000 random
permutations, computed in the same way as for MCMC and
our algorithm, showing sampling the learned Plackett-Luce
distribution gives permutations far better than random.

Conclusion
In this work we proposed a gradient-based optimization
method, with unique capabilities for application to Plackett-
Luce distributions over permutations. A proof of concept
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Table 4: Results for ALARM graph (37 nodes)
Val Q̂− Q̂∗ SHD SHD-CPDAG SID

PL-RELAX -15645.2±3255.8 14.6±1.7 19.0±2.3 214.2±31.8
SINKHORN N/A
URS N/A
ORDER MCMC -13404.7±2224.6 8.6±1.1 10.6±0.5 104.4±20.8

RANDOM -75022.7±9647.7 25.8±3.7 30.0±3.9 478.8±70.8

experiment shows our method outperforms existing meth-
ods for differentiable objective functions, whilst also gen-
eralizing to non-differentiable black-box functions, and be-
ing applicable to permutation learning despite the factorial
complexity. This allowed us to extend Plackett-Luce distri-
bution based causal graphical model structure learning be-
yond the simple SEM based methods, to the more general
case of DAGs of arbitrary variable types.

In future, our method could be combined with other stan-
dard scoring functions from Bayesian network literature -
providing they decompose as described in equation (30) -
for DAG structure learning of continuous data from different
model types. Other potential applications include approxi-
mate inference for probabilistic models with latent permuta-
tions, routing problems and combinatorial problems for per-
mutations.
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Appendix
We prove Proposition 1 in this section. We first discuss the
properties of Gumbel distribution. Then we discuss the gen-
erative processes for the densities used for p(z | b, θ) in
Eq. 20. Then we show that p(b | z)p(z | θ) = p(b | θ)p(z |
b, θ) for the unconditional Gumbel density p(z | θ) and the
Plackett-Luce distribution p(b | θ).

Density for the Gumbel distribution and the
truncated Gumbel distribution
The density function of the Gumbel distribution with loca-
tion parameter µ is

φµ(z) = exp(−z + µ) exp(− exp(−z + µ)) (31)

and the cumulative density function is

Φµ = exp(− exp(−z + µ)). (32)

Our derivation of the conditional distribution p(b | z, θ) re-
lies on the additive property of the cumulative density func-
tion of the Gumbel distribution

Φlog(expµ+exp ν)(z) =

exp(− exp(z)(expµ+ exp ν)) = Φµ(z)Φν(z), (33)

which we enfold in the following auxiliary claim.

Lemma 2. For permutation b ∈ Sk, score vector θ ∈ Rk
and i = 1, . . . , k and the argument vector z ∈ Rk we have

φθbi (zbi)Φlog(
∑k
j=i+1 exp θbj )(zbi) (34)

=
exp θbi∑k
j=i exp θbj

φlog(
∑k
j=i exp θbj )(zbi). (35)

Proof. For brevity, we denote exp θi as pi. We then rewrite
the density φlog pbi

(zbi) through the exponent exp(−zbi +

log pbi) and c.d.f. Φlog pbi
(zbi) and apply the additive prop-

erty in Eq. 38:

φlog pbi
(zbi)Φlog(

∑k
j=i+1 pbj )(zbi) (36)

= pbi exp(−zbi)Φlog pbi
(zbi)Φlog(

∑k
j=i+1 pbj )(zbi) (37)

= pbi exp(−zbi)Φlog(
∑k
j=i pbj )(zbi) (38)

= pbi

∑k
j=i pbj∑k
j=i pbj

exp(−zbi)Φlog(
∑k
j=i pbj )(zbi) (39)

=
pbi∑k
j=1 pbj

φlog(
∑k
j=i pbj )(zbi). (40)

The last step collapses the exponent and the c.d.f. into the
density function φlog(

∑k
j=i pbj )(zbi).

Finally, to define the density of conditional distribution
p(b | z, θ) we define the density of the truncated Gumbel
distribution φz0µ (z) ∝ φµ(z)I[z ≤ z0]:

φz0µ (z) =
φµ(z)

Φµ(z0)
(z)I[z ≤ z0], (41)

where the superscript z0 denotes the truncation parameter.

Reparametrization for the Gumbel distribution
and the truncated Gumbel distribution
The reparametrization trick requires representing a draw
from a distribution as a deterministic transformation of a
fixed distribution sample and a distribution parameter. For
a sample z from the Gumbel distribution G(µ, 1) with loca-
tion parameter µ the representation is

z = µ− log(− log v), v ∼ uniform[0, 1]. (42)

For the Gumbel distribution truncated at z0 (Maddison, Tar-
low, and Minka 2014) proposed an analogous representation

z = µ− log(− log v + exp(−z0 + µ))

= − log

(
− log v

expµ
+ exp(−z0)

)
(43)

v ∼ uniform[0, 1]. (44)

In particular, the sampling schemes in Eq. 10 and Eq. 20
generate samples from the truncated Gumbel distribution.

The derivation of the conditional distribution
We now derive the conditional distribution and the sampling
scheme defined in Proposition 1.
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The joint distribution of the permutation b and the Gumbel
samples z is

p(b, z | θ) = p(b | z)p(z | θ) (45)

= φθb1 (zb1)

k∏

i=2

(
φθbi (zbi)I[zbi−1

≥ zbi ]
)

(46)

We first multiply and divide the joint density by the c.d.f.
Φlog(

∑k
i=2 exp θbi )

(zb1) and apply Lemma 2

Φlog(
∑k
i=2 exp θbi )

(zb1)

Φlog(
∑k
i=2 exp θbi )

(zb1)
φθb1 (zb1)

k∏

i=2

. . . (47)

=
exp θb1∑k
i=1 exp θbi

φlog(
∑k
i=1 exp θbi )

(zb1)

Φlog(
∑k
i=2 exp θbi )

(zb1)

k∏

i=2

. . . . (48)

Next, we apply Lemma 2 to combine the c.d.f. in
the denominator Φlog(

∑k
j=i exp θbj )(zbi−1

) and the term
φθbi (zbi)I[zbi−1 ≥ zbi ] inside the product

φθbi (zbi)I[zbi−1
≥ zbi ]

Φlog(
∑k
j=i exp θbj )(zbi−1

)
(49)

=
φθbi (zbi)I[zbi−1

≥ zbi ]
Φlog(

∑k
j=i exp θbj )(zbi−1)

Φ
log(

∑k
j=i+1

exp θbj
)
(zbi )

Φ
log(

∑k
j=i+1

exp θbj
)
(zbi )

(50)

=
exp θbi∑k
j=i exp θbj

φ
zbi−1

log(
∑k
j=i exp θbj )

(zbi)

Φlog(
∑k
j=i+1 exp θbj )(zbi)

(51)

and obtain the truncated distribution φ
zbi−1

log(
∑k
j=i exp θbj )

(zbi)

along with one factor of the Plackett-Luce probability
exp θbi∑k
j=i exp θbj

. Also, after the transformation the summa-

tion index in the denominator c.d.f. changes from i to
i + 1. This gives us an induction step that we apply se-
quentially for i = 2, . . . , k − 1. For i = k the de-
nominator c.d.f. Φlog exp θk(zbk−1

) and the product term
φlog exp θk(zbk)I[zk−1 ≥ zk] combine into the truncated
Gumbel distribution with density φ

zbk−1

log exp θk
(zbk).

As a result, we rearrange p(b, z | θ) into the product of
the truncated Gumbel distribution densities p(z | b, θ) and
the probability of the Plackett-Luce distribution p(b | θ):

k∏

i=1

exp θbi∑k
j=i exp θbj

(
φ0(zb1)

k∏

i=2

φ
zbi−1

log
∑k
j=i exp θj

(zbi)

)
. (52)

Finally, to obtain the claim of Proposition 1 we apply the
reparametrized sampling scheme defined in Eq. 43.
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Abstract. We study consistency properties of machine learning methods based on minimizing convex
surrogates. We extend the recent framework of Osokin et al.(2017) for the quantitative analysis of
consistency properties to the case of inconsistent surrogates. Our key technical contribution consists in a
new lower bound on the calibration function for the quadratic surrogate, which is non-trivial (not always
zero) for inconsistent cases. The new bound allows to quantify the level of inconsistency of the setting
and shows how learning with inconsistent surrogates can have guarantees on sample complexity and
optimization difficulty. We apply our theory to two concrete cases: multi-class classification with the tree-
structured loss and ranking with the mean average precision loss. The results show the approximation-
computation trade-offs caused by inconsistent surrogates and their potential benefits.
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Abstract

We study consistency properties of machine learning methods based on minimizing
convex surrogates. We extend the recent framework of Osokin et al. [14] for the
quantitative analysis of consistency properties to the case of inconsistent surrogates.
Our key technical contribution consists in a new lower bound on the calibration
function for the quadratic surrogate, which is non-trivial (not always zero) for in-
consistent cases. The new bound allows to quantify the level of inconsistency of the
setting and shows how learning with inconsistent surrogates can have guarantees on
sample complexity and optimization difficulty. We apply our theory to two concrete
cases: multi-class classification with the tree-structured loss and ranking with the
mean average precision loss. The results show the approximation-computation
trade-offs caused by inconsistent surrogates and their potential benefits.

1 Introduction

Consistency is a desirable property of any statistical estimator, which informally means that in the
limit of infinite data, the estimator converges to the correct quantity. In the context of machine
learning algorithms based on surrogate loss minimization, we usually use the notion of Fisher
consistency, which means that the exact minimization of the expected surrogate loss leads to the exact
minimization of the actual task loss. It can be shown that Fisher consistency is closely related to the
question of infinite-sample consistency (a.k.a. classification calibration) of the surrogate loss with
respect to the task loss (see [2, 17] for a detailed review).

The property of infinite-sample consistency (which we will refer to as simply consistency) shows
that the minimization of a particular surrogate is the right problem to solve, but it becomes especially
attractive when one can actually minimize the surrogate, which is the case, e.g, when the surrogate
is convex. Consistency of convex surrogates has been the central question of many studies for such
problems as binary classification [2, 24, 19], multi-class classification [23, 21, 1, 17], ranking [11, 4,
5, 18, 15] and, more recently, structured prediction [7, 14].

Recently, Osokin et al. [14] have pinpointed that in some cases minimizing a consistent convex
surrogate might be not sufficient for efficient learning. In particular, when the number of possible
predictions is large (which is typically the case in the settings of structured prediction and ranking)
reaching adequately small value of the expected task loss can be practically impossible, because
one would need to optimize the surrogate to high accuracy, which requires an intractable number of
iterations of the optimization algorithm.
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It also turns out [14] that the possibility of efficient learning is related to the structure of the task loss.
The 0-1 loss, which does not make distinction between different kinds of errors, shows the worst case
behavior. However, more structured losses, e.g., the Hamming distance between sequence labelings,
allow efficient learning if the score vector is designed appropriately (for the Hamming distance, the
score for a complete configuration should be decomposable into the sum of scores for individual
elements).

However, the analysis of Osokin et al. [14] gives non-trivial conclusions only for consistent surrogates.
At the same time it is known that inconsistent surrogates often work well in practice (for example, the
Crammer-Singer formulation of multi-class SVM [8], or its generalization structured SVM [20, 22]).
There have indeed been several works to analyze inconsistent surrogates [12, 18, 5, 14], but they
usually end the story with proving that some surrogate (or a family or surrogates) is not consistent.

Contributions. In this work, we look at the problem from a more quantitative angle and analyze
to which extent inconsistent surrogates can be useful for learning. We focus on the same setting
as [14] and generalize their results to the case of inconsistent surrogates (their bounds are trivial for
these cases) to be able to draw non-trivial conclusions. The main technical contribution consists in
a tighter lower bound on the calibration function (Theorem 3), which is strictly more general than
the bound of [14]. Notably, our bound is non-trivial in the case when the surrogate is not consistent
and quantifies to which degree learning with inconsistent surrogates is possible. We further study
the behavior of our bound in two practical scenarios: multi-class classification with a tree-structured
loss and ranking with the mean average precision (mAP) loss. For the tree-structured loss, our bound
shows that there can be a trade-off between the best achievable accuracy and the speed of convergence.
For the mAP loss, we use our tools to study the (non-)existence of consistent convex surrogates of a
particular dimension (an important issue for the task of ranking [11, 4, 5, 18, 17]) and quantify to
which extent our quadratic surrogate with the score vector of insufficient dimension is consistent.

This paper is organized as follows. First, we introduce the setting we work with in Section 2 and
review the key results of [14] in Section 3. In Section 4, we prove our main theoretical result, which
is a new lower bound on the calibration function. In Section 5, we analyze the behavior of our bound
for the two different settings: multi-class classification and ranking (the mean average precision loss).
Finally, we review the related works and conclude in Section 6.

2 Notation and Preliminaries

In this section, we introduce our setting, which closely follows [14]. We denote the input features
by x ∈ X where X is the input domain. The particular structure of X is not of the key importance
for this study. The output variables, that are in the center of our analysis, will be denoted by ŷ ∈ Ŷ
with Ŷ being the set of possible predictions or the output domain.5 In such settings as structured
prediction or ranking, the predictions are very high-dimensional and with some structure that is useful
to model explicitly (for example, a sequence, permutation or image).

The central object of our study is the loss function L(ŷ,y) ≥ 0 that represents the cost of making the
prediction ŷ ∈ Ŷ when the ground-truth label is y ∈ Y . Note that in some applications of interest
the sets Ŷ and Y are different. For example, in ranking with the mean average precision (mAP) loss
function (see Section 5.2 and, e.g., [18] for the details), the set Ŷ consists of all the permutations
of the items (to represent the ranking itself), but the set Y consists of all the subsets of items (to
represent the set of relevant items, which is the ground-truth annotation in this setting). In this paper,
we only study the case when both Ŷ and Y are finite. We denote the cardinality of Ŷ by k, and the
cardinality of Y by m. In this case, the loss function can be encoded as a matrix L of size k ×m.

In many applications of interest, both quantities k and m are exponentially large in the size of the
natural dimension of the input x. For example, in the task of sequence labeling, both k and m are
equal to the number of all possible sequences of symbols from a finite alphabet. In the task of ranking
(the mAP formulation), k is equal to the number of permutations of items and m is equal to the
number of item subsets.

5The output domain Ŷ itself can depend on the vector of input features x (for example, if x can represent
sequences of different lengths and the length of the output sequence has to equal the length of the input), but we
will not use this dependency and omit it for brevity.
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Following usual practices, we work with the prediction model defined by a (learned) vector-valued
score function f : X → Rk, which defines a scalar score fŷ(x) for each possible output ŷ ∈ Ŷ . The
final prediction is then chosen as an output configuration with the maximal score:

pred(f(x)) := argmax
ŷ∈Ŷ

fŷ(x). (1)

If the maximal score is given by multiple outputs ŷ (so-called ties), the predictor follows a simple
deterministic tie-breaking rule and picks the output appearing first in some predefined ordering on Ŷ .

In this setup, learning consists in finding a score function f for which the predictor gives the smallest
expected loss with features x and labels y coming from an unknown data-generating distribution D:

RL(f) := IE(x,y)∼D L
(
pred(f(x)),y

)
. (2)

The quantity RL(f) is usually referred to as the actual (or population) risk based on the loss L.
Minimizing the actual risk directly is usually difficult (because of non-convexity and non-continuity
of the predictor (1)). The standard approach is to substitute (2) with another objective, a surrogate risk
(or the Φ-risk), which is easier for optimization (in this paper, we only consider convex surrogates):

RΦ(f) := IE(x,y)∼D Φ(f(x),y), (3)

where we will refer to the function Φ : Rk ×Y → R as the surrogate loss. To make the minimization
of (3) well-defined, we will always assume the surrogate loss Φ to be bounded from below and
continuous.

The surrogate loss should be chosen in such a way that the minimization of (3) also leads to the
minimization of (2), i.e., to the solution of the original problem. The property of consistency of
the surrogate loss is an approach to formalize this intuition, i.e., to guarantee that no matter the
data-generating distribution, minimizing (3) w.r.t. f implies minimizing (2) w.r.t. f as well (both
of these are possible only in the limit of infinite data and computational budget). Osokin et al.
[14] quantified what happens if the surrogate risk is minimized approximately by translating the
optimization error of (3) to the optimization error of (2). The main goal of this paper is to generalize
this analysis to the cases when the surrogate is not consistent and to show that there can be trade-offs
between the minimum value of the actual risk that can be achieved by minimizing an inconsistent
surrogate and the speed with which this minimum can be achieved.

3 Calibration Functions and Consistency

In this section, we review the approach of Osokin et al. [14] for studying consistency in the context
of structured prediction. The first part of the analysis establishes the connection between the
minimization of the actual risk RL (2) and the surrogate risk RΦ (3) via the so-called calibration
function (see Definition 1 [14, and references therein]). This step is usually called non-parametric (or
pointwise) because it does not explicitly model the dependency of the scores f := f(x) on the input
variables x. The second part of the analysis establishes the connection with an optimization algorithm
allowing to make a statement about how many iterations would be enough to find a predictor that is
(in expectation) within ε of the global minimum of the actual riskRL.

Non-parametric analysis. The standard non-parametric setting considers all measurable score
functions f to effectively ignore the dependency on the features x. As noted by [14], it is beneficial to
consider a restricted set of the score functions FF that consists of all vector-valued Borel measurable
functions f : X → F where F ⊆ Rk is a subspace of allowed score vectors. Compatibility of the
subspace F and the loss function L will be a crucial point of this paper. Note that the analysis is still
non-parametric because the dependence on x is not explicitly modeled.

Within the analysis, we will use the conditional actual and surrogate risks defined as the expectations
of the corresponding losses w.r.t. a categorical distribution q on the set of annotations Y , m := |Y|:

`(f , q) :=
∑m

y=1
qyL(pred(f),y), φ(f , q) :=

∑m

y=1
qyΦ(f ,y). (4)

Hereinafter, we represent an m-dimensional categorical distribution q as a point in the probability
simplex ∆m and use the symbol qy to denote the probability of the y-th outcome. Using this notation,
we can rewrite the riskRL and surrogate riskRΦ as

RL(f) = IEx∼DX `(f(x), IPD(· | x)), RΦ(f) = IEx∼DX φ(f(x), IPD(· | x)), (5)
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where DX is the marginal distribution of x and IPD(· | x) denotes the conditional distribution of y
given x (both defined for the joint data-generating distribution D).

For each score vector f ∈ F and a distribution q ∈ ∆m over ground-truth labels, we now define the
excess actual and surrogate risks

δφ(f , q) = φ(f , q)− inf
f̂∈F

φ(f̂ , q), δ`(f , q) = `(f , q)− inf
f̂∈Rk

`(f̂ , q), (6)

which show how close the current conditional actual and surrogate risks are to the corresponding
minimal achievable conditional risks (depending only on the distribution q). Note that the two infima
in (6) are defined w.r.t. different sets of score vectors. For the surrogate risk, the infimum is taken
w.r.t. the set of allowed scores F capturing only the scores obtainable by the learning process. For the
actual risk, the infimum is taken w.r.t. the set of all possible scores Rk including score vectors that
cannot be learned. This distinction is important when analyzing inconsistent surrogates and allows to
characterize the approximation error of the selected function class.6

We are now ready to define the calibration function, which is the final object of the non-parametric
part of the analysis. Calibration functions directly show how well one needs to minimize the surrogate
risk to guarantee that the excess of the actual risk is smaller than ε.
Definition 1 (Calibration function, [14]). For a task loss L, a surrogate loss Φ, a set of feasible
scores F , the calibration function HΦ,L,F (ε) is defined as:

HΦ,L,F (ε) := inf
f∈F, q∈∆m

δφ(f , q) (7)

s.t. δ`(f , q) ≥ ε, (8)
where ε ≥ 0 is the target accuracy. We set HΦ,L,F (ε) to +∞ when the feasible set is empty.

By construction, HΦ,L,F is non-decreasing on [0,+∞), HΦ,L,F (ε) ≥ 0 and HΦ,L,F (0) = 0. The
calibration function also provides the so-called excess risk bound

HΦ,L,F (δ`(f , q)) ≤ δφ(f , q), ∀f ∈ F , ∀q ∈ ∆m, (9)
which implies the formal connection between the surrogate and task risks [14, Theorem 2].

The calibration function can fully characterize consistency of the setting defined by the surrogate loss,
the subspace of scores and the task loss. The maximal value of ε at which the calibration function
HΦ,L,F (ε) equals zero shows the best accuracy on the actual loss that can be obtained [14, Theorem
6]. The notion of level-η consistency captures this effect.
Definition 2 (level-η consistency, [14]). A surrogate loss Φ is consistent up to level η ≥ 0 w.r.t. a
task loss L and a set of scores F if and only if the calibration function satisfies HΦ,L,F (ε) > 0 for
all ε > η and there exists ε̂ > η such that HΦ,L,F (ε̂) is finite.

The case of level-0 consistency corresponds to the classical consistent surrogate and Fisher consistency.
When η > 0, the surrogate is not consistent, meaning that the actual risk cannot be minimized
globally. However, Osokin et al. [14, Appendix E.4] give an example where even though constructing
a consistent setting is possible (by the choice of the score subspace F), it might still be beneficial
to use only a level-η consistent setting because of the exponentially faster growth of the calibration
function. The main contribution of this paper is a lower bound on the calibration function (Theorem 3),
which is non-zero for η > 0 and thus can be used to obtain convergence rates in inconsistent settings.

Optimization and learning guarantees; normalizing the calibration function. Osokin et al. [14]
note that the scale of the calibration function is not defined, i.e., if one multiplies the surrogate loss
by some positive constant, the calibration function is multiplied by the same constant as well. One
way to define a “natural normalization” is to use a scale-invariant convergence rate of a stochastic
optimization algorithm. Osokin et al. [14, Section 3.3] applied the classical online ASGD [13] (under
the well-specification assumption) and got the sample complexity (and the convergence rate of ASGD
at the same time) result saying that N∗ steps of ASGD are sufficient to get ε-accuracy on the task
loss (in expectation), where N∗ is computed as follows:

N∗ := 4D2M2

Ȟ2
Φ,L,F (ε)

. (10)

6Note that Osokin et al. [14] define the excess risks by taking both infima w.r.t. the the set of allowed
scores F , which is subtly different from us. The results of the two setups are equivalent in the cases of consistent
surrogates, which are the main focus of Osokin et al. [14], but can be different in inconsistent cases.
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Here the quantity N∗ depends on a convex lower bound ȞΦ,L,F (ε) on the calibration func-
tion HΦ,L,F (ε) and the constants D, M , which appear in the convergence rate of ASGD: D is
an upper bound on the norm of an optimal solution and M2 is an upper bound on the expected square
norm of the stochastic gradient. Osokin et al. [14] show how to bound the constant DM for a very
specific quadratic surrogate defined below (see Section 3.1).

3.1 Bounds for the Quadratic Surrogate

The major complication in applying and interpreting the theoretical results presented in Section 3
is the complexity of computing the calibration function. Osokin et al. [14] analyzed the calibration
function only for the quadratic surrogate

Φquad(f , ŷ) := 1
2k‖f + L(:,y)‖22 = 1

2k

∑
ŷ∈Ŷ

(f2
ŷ + 2fŷL(ŷ,y) + L(ŷ,y)2). (11)

For any task loss L, this surrogate is consistent whenever the subspace of allowed scores is rich
enough, i.e., the subspace of scores F fully contains span(L). To connect with optimization, we
assume a parametrization of the subspace F as a span of the columns of some matrix F , i.e.,
F = span(F ) = {f = Fθ | θ ∈ Rr}.7 In the interesting settings, the dimension r is much smaller
than both k and m. Note that to compute the gradient of the objective (11) w.r.t. the parameters θ,
one needs to compute matrix products FTF ∈ Rr×r and FTL(:,y) ∈ Rr, which are usually both of
feasible sizes, but require exponentially big sum (k summands) inside. Computing these quantities
can be seen as some form of inference required to run the learning process.

Osokin et al. [14] proved a lower bound on the calibration functions for the quadratic surro-
gate (11) [14, Theorem 7], which we now present to contrast our result presented in Section 4.
When the subspace of scores F contains span(L), span(L) ⊆ F , implying that the setting is con-
sistent, the calibration function is bounded from below by mini 6=j ε2

2k‖PF∆ij‖22
, where PF is the

orthogonal projection on the subspace F and ∆ij := ei−ej ∈ Rk with ec being the c-th basis vector
of the standard basis in Rk. They also showed that for some very structured losses (Hamming and
block 0-1 losses), the quantity k‖PF∆ij‖22 is not exponentially large and thus the calibration function
suggests that efficient learning is possible. One interesting case not studied by Osokin et al. [14] is
the situation where the subspace of scores F does not fully contain the subspace span(L). In this
case, the surrogate might not be consistent but still lead to effective and efficient practical algorithms.

Normalizing the calibration function. The normalization constant DM appearing in (10) can
also be computed for the quadratic surrogate (11) under the assumption of well-specification (see
[14, Appendix F] for details). In particular, we have DM = L2

maxξ(κ(F )
√
rRQmax), ξ(z) =

z2 + z, where Lmax denotes the maximal value of all elements in L, κ(F ) is the condition number of
the matrix F and r in an upper bound on the rank of F . The constants R and Qmax come from the
kernel ASGD setup and, importantly, depend only on the data distribution, but not on the loss L or
score matrix F . Note that for a given subspace F , the choice of matrix F is arbitrary and it can always
be chosen as an orthonormal basis of F giving a κ(F ) of one. However, such F can lead to inefficient
prediction (1), which makes the whole framework less appealing. Another important observation
coming from the value of DM is the justification of the 1

k scaling in front of the surrogate (11).

4 Calibration Function for Inconsistent Surrogates

Our main result generalizes the Theorem 7 of [14] to the case of inconsistent surrogates (the key
difference consists in the absence of the assumption span(L) ⊆ F).
Theorem 3 (Lower bound on the calibration function HΦquad,L,F (ε)). For any task loss L, its
quadratic surrogate Φquad, and a score subspace F , the calibration function is bounded from below:

HΦquad,L,F (ε) ≥ min
i 6=j

max
v≥0

(εv−ξij(v))2
+

2k‖PF∆ij‖22
, where ξij(v) :=

∥∥ LT(vIk − PF )∆ij

∥∥
∞, (12)

where PF is the orthogonal projection on the subspace F , (x)2
+ := [x > 0]x2 is the truncation of

the parabola to its right branch and ∆ij := ei − ej ∈ Rk with ec ∈ Rk being the c-th column of the
7We do a pointwise analysis in this section, so we are not modeling the dependence of θ on the features x.

However, in an actual implementation, the vector θ should be a function of the features x coming from some
flexible family such as a RKHS or some neural networks.
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identity matrix Ik. By convention, if both numerator and denominator of (12) equal zero the whole
bound equals zero. If only the denominator equals zero then the whole bound equals infinity (the
particular pair of i and j is effectively not considered).

The proof of Theorem 3 starts with using the idea of [14] to compute the calibration function by
solving a collection of convex quadratic programs (QPs). Then we diverge from the proof of [14]
(because it leads to a non-informative bound in inconsistent settings). For each of the formulated
QPs, we construct a dual by using the approach of Dorn [10]. The dual of Dorn is convenient for our
needs because it does not require inverting the matrix defining the quadratic terms (compared to the
standard Lagrangian dual). The complete proof is given in Appendix B.
Remark 4. The numerator of the bound (12) explicitly specifies the point at which the bound becomes
non-zero, implying level-η consistency with η =

ξij(v)
v for the values of i, j, v that are active for a

particular ε. The quantity v2

2k‖PF∆ij‖22
bounds the weight of the ε2 term in the calibration function

after it leaves zero. Moving the quantity v defines the trade-off between the slope, which is related to
the convergence speed of the algorithm, and the value of η defining the best achievable accuracy.
Remark 5. If we have conditions of Theorem 7 of [14] satisfied, i.e., span(L) ⊆ F , then the
vector LT(Ik − PF )∆ij equals zero and ξij(v) becomes |v − 1| ‖LT∆ij‖∞, which equals zero
when v = 1. It might seem that having v > 1 can potentially give us a tighter lower bound than
Theorem 7 [14] even in consistent cases. However, the quantity ‖LT∆ij‖∞ upper bounds the
maximal possible (w.r.t. the conditional distribution IPD(· | x)) value of the excess task loss for a
fixed pair i, j leading to the identity vε− |v− 1| ‖LT∆ij‖∞ = ‖LT∆ij‖∞ for ε = ‖LT∆ij‖∞ and
v ≥ 1. Together with the convexity of the function (x)2

+, this implies that the best possible value of v
in consistent settings equals one.
Remark 6. Setting v in (12) to any non-negative constant gives a valid lower bound. In particular,
setting v to 1 (while potentially making the bound less tight) highlights the separation between the
weight of the quadratic term and the best achievable accuracy η. The bound now reads as follows:

HΦquad,L,F (ε) ≥ min
i 6=j

(ε−ξij)2
+

2k‖PF∆ij‖22
, where ξij :=

∥∥ LT(Ik − PF )∆ij

∥∥
∞. (13)

Note that the weight of the ε2 term now equals the corresponding coefficient of the bound of
Theorem 7 [14]. Notably, this weight depends only on the score subspace F , but not on the loss L.

5 Bounds for Particular Losses
5.1 Multi-Class Classification with the Tree-Structured Loss
As an illustration of the obtained lower bound (12), we consider the task of multi-class classification
and the tree-structured loss, which is defined for a weighted tree built on labels (such trees on labels
often appear in settings with large number of labels, e.g., extreme classification [6]). Leaves in
the tree correspond to the class labels ŷ ∈ Ŷ = Y and the loss function is defined as the length
of the path ρ between the leaves, i.e., Ltree(y, ŷ) := ρ(y, ŷ). To compute the lower bound exactly,
we assume that the number of children ds and the weights of the edges connecting a node with its
children αs

2 are equal for all the nodes of the same depth level s = 0, . . . , D − 1 (see Figure 2 in
Appendix C for an example of such a tree) and that

∑D−1
s=0 αs = 1, which normalizes Lmax to one.

To define the score matrix Ftree,s0 , we set the consistency depth s0 ∈ {1, . . . , D} and restrict the
scores f to be equal for the groups (blocks) of leaves that have the same ancestor on the level s0. Let
B(i) be the set of leaves that have the same ancestor as a leaf i at the depth s0. With this notation, we
have Ftree,s0 = span {∑i∈B(j) ei | j = 1, . . . , k}. Theorem 3 gives us the bound (see Appendix C):

HΦquad,Ltree,Ftree,s0
(ε) ≥ [ε > ηs0 ]

(ηs0−ρ̄s0+αs0−1)2

(
ηs0
2 +αs0−1)2

(ε−
ηs0
2 )2

+

4bs0
, (14)

where bs0 , ρ̄s0 := 1
|B(j)|

∑
i∈B(j) ρ(i, j) =

∑D−1
s=s0

αs
(
∏s
s′=s0

ds′ )−1
∏s
s′=s0

ds′
and ηs0 := maxi∈B(j) ρ(i, j) =

∑D−1
s=s0

αs are the number of blocks, the average and maximal distance within a block, respectively.

Now we discuss the behavior of the bound (14) when changing the truncation level s0. With the
growth of s0, the level of consistency ηs0 goes to 0 indicating that more labels can be distinguished.
At the same time, we have ηs0

2 ≤ ρ̄s0 for the trees we consider and thus the coefficient in front of the
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ε2 term can be bounded from above by 1
4bs0

, which means that the lower bound on the calibration
function decreases at an exponential rate with the growth of s0. These arguments show the trade-off
between the level of consistency and the coefficient of ε2 in the calibration function.

Finally, note that the mixture of 0-1 and block 0-1 losses considered in [14, Appendix E.4] is an
instance of the tree-structured loss with D = 2. Their bound [14, Proposition 17] matches (14) up to
the difference in the definition of the calibration function (they do not have the [ε > ηs0 ] multiplier
because they do not consider pairs of labels that fall in the same block).

5.2 Mean Average Precision (mAP) Loss for Ranking
The mAP loss, which is a popular way of measuring the quality of ranking, has attracted significant
attention from the consistency point of view [4, 5, 18]. In the mAP setting, the ground-truth labels
are binary vectors y ∈ Y = {0, 1}r that indicate the items relevant for the query (a subset of r
items-to-rank) and the prediction consists in producing a permutation of items σ ∈ Ŷ , Ŷ = Sr. The
mAP loss is based on averaging the precision at different levels of recall and is defined as follows:

LmAP(σ, y) := 1− 1
|y|

r∑

p:yp=1

1
σ(p)

σ(p)∑

q=1

yσ−1(q) = 1−
r∑

p=1

p∑

q=1

1
max(σ(p),σ(q))

ypyq
|y| , (15)

where σ(p) is the position of an item p in a permutation σ, σ−1 is the inverse permutation and
|y| :=

∑r
p=1 yp. The second identity provides a convenient form of writing the mAP loss [18]

showing that the loss matrix LmAP is of rank at most 1
2r(r + 1).8 The matrix FmAP ∈ Rr!×

1
2 r(r+1)

such that (FmAP)σ,pq := 1
max(σ(p),σ(q)) is a natural candidate to define the score subspace F to

get the consistent setting with the quadratic surrogate (11) (Eq. (15) implies that span(LmAP) =
span(FmAP)).

However, as noted in Section 6 of [18], although the matrix FmAP is convenient from the consistency
point of view (in the setup of [18]), it leads to the prediction problem maxσ∈Sr (FmAPθ)σ , which is a
quadratic assignment problem (QAP), and most QAPs are NP-hard.

To be able to predict efficiently, it would be beneficial to have the matrix F with r columns such
that sorting the r-dimensional θ would give the desired permutation. It appears that it is possible to
construct such a matrix by selecting a subset of columns of matrix FmAP. We define Fsort ∈ Rr!×r by
(Fsort)σ,p := 1

σ(p) . A solution of the prediction problem maxσ∈Sr (Fsortθ)σ is simply a permutation
that sorts the elements of θ ∈ Rr in the decreasing order (this statement follows from the fact that we
can always increase the score (Fsortθ)σ =

∑r
p=1

θp
σ(p) by swapping a pair of non-aligned items).

Most importantly for our study, the columns of the matrix Fsort are a subset of the columns of the
matrix FmAP, which indicates that learning with the convenient matrix Fsort might be sufficient for
the mAP loss. In what follows, we study the calibration functions for the loss matrix LmAP and score
matrices FmAP and Fsort. In Figure 1a-b, we plot the calibration functions for both FmAP and Fsort
and the lower bounds given by Theorem 3. All the curves were obtained for r = 5 (computing the
exact values of the calibration functions is exponential in r).

Next, we study the behavior of the lower bound (12) for large values of r. In Lemma 13 of
Appendix D, we show that the denominator of the bound (12) is not exponential in r (we have
2r!‖PFsort∆πω‖22 = O(r)). We also know that ‖PFsort∆πω‖22 ≤ ‖PFmAP∆πω‖22 (because Fsort is a
subspace of FmAP), which implies that the calibration function of the consistent setting grows not
faster than the one of the inconsistent setting. We can also numerically compute a lower bound on
the point η until which the calibration function is guaranteed to be zero (for this we simply pick two
permutations π, ω and a labeling y that delivers large values of

(
LT

mAP(Ik −PFsort)∆ij

)
y
≤ ξπ,ω(1)).

Figure 1c shows that the level of inconsistency η grows with the growth of r, which makes the method
less appealing for large-scale settings.

Finally, note that to run the ASGD algorithm for the quadratic surrogate (11), mAP loss and score
matrix Fsort, we need to efficiently compute FT

sortFsort and FT
sortLmAP(:,y). Lemmas 11 and 12 (see

Appendix D) provide linear in r time algorithms for doing this. The condition number of Fsort grows
as Θ(log r) keeping the sample complexity bound (10) well behaved.

8Ramaswamy & Agarwal [17, Proposition 21] showed that the rank of LmAP is a least 1
2
r(r + 1)− 2.
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Figure 1: Plot (a) shows the calibration function HΦquad,LmAP,FmAP(ε) for LmAP (red line) obtained
numerically. The solid blue line [14, Theorem 7] is its lower bound, LB, and the solid black line
is the worst case bound obtained for F = Ir! (which means not constructing an appropriate low-
dimension F). Difference between the blue and the black lines is exponential (proportional to r!).
The dashed blue line illustrates the inconsistent surrogate (note that it is zero for small ε > 0, but
then grows faster than the solid blue line – the consistent setting). Plot (b) shows the calibration
function HΦquad,LmAP,Fsort(ε) (red line) obtained numerically (this setting is level-η consistent for
η ≈ 0.08). The blue line (Theorem 3) is its lower bound for the optimal value of v and the green
line is the bound for v = 1 (easier to obtain). The black line shows the zero-valued trivial bound
from [14]. The dashed blue line shows HΦquad,LmAP,FmAP(ε) for the consistent surrogate to compare
the two settings. Note that in both plots (a) and (b) the solid blue lines are the lower bounds of
the corresponding calibration functions (red lines), but the dashed blue lines are not (shown for
comparison purposes). Plot (c) shows a lower bound on the point η where the exact calibration
function HΦquad,LmAP,Fsort(ε) stops being zero, indicating the level of consistency (Definition 2).

6 Discussion
Related works. Despite a large number of works studying consistency and calibration in the context
of machine learning, there have been relatively few attempts to obtain guarantees for inconsistent
surrogates. The most popular approach is to study consistency under so-called low noise conditions.
Such works show that under certain assumptions on the data generating distribution D (usually these
assumptions are on the conditional distribution of labels and are impossible to verify for real data)
the surrogate of interest becomes consistent, whereas being inconsistent for general D. Duchi et al.
[11] established such a result for the value-regularized linear surrogate for ranking (which resembles
the pairwise disagreement, PD, loss). Ramaswamy et al. [18] provided similar results for the mAP
and PD losses for ranking and their quadratic surrogate. Similarly to our conclusions, the mAP
surrogate of [18] is consistent with 1

2r(r + 1) parameters learned and only low-noise consistent
with r parameters learned. Long & Servedio [12] introduced a notion of realizable consistency
w.r.t. a function class (they considered linear predictors), which is consistency w.r.t. the function
class assuming the data distribution such that labels depend on features deterministically with this
dependency being in the correct function class. Ben-David et al. [3] worked in the agnostic setting for
binary classification (no assumptions on the underlying D) and provided guarantees on the error of
linear predictors when the margin was bounded by some constant (their work reduces to consistency
in the limit case, but is more general).

Conclusion. Differently from the previous approaches, we do not put constraints on the data
generating distribution, but instead study the connection between the surrogate and task losses by the
means of the calibration function (following [14]), which represents the worst-case scenario. For the
quadratic surrogate (11), we can bound the calibration function from below in such a way that the
bound is non-trivial in inconsistent settings (differently from [14]). Our bound quantifies the level
of inconsistency of a setting (defined by the used surrogate loss, task loss and parametrization of
the scores) and allows to analyze when learning with inconsistent surrogates can be beneficial. We
illustrate the behavior of our bound for two tasks (multi-class classification and ranking) and show
examples of conclusions that our approach can give.

Future work. It would be interesting to combine our quantitative analysis with the constraints on the
data distribution, which might give adaptive calibration functions (in analogy to adaptive convergence
rates in convex optimization: for example, SAGA [9] has a linear convergence rate for strongly convex
objectives and 1/t rate for non-strongly convex ones), and with the recent results of Pillaud-Vivien
et al. [16] showing that under some low-noise assumptions even slow convergence of the surrogate
objective can imply exponentially fast convergence of the task loss.
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Supplementary Material (Appendix)
Quantifying Learning Guarantees for Convex but

Inconsistent Surrogates

Outline
Section A: Proofs of the two technical lemmas used in Theorem 3.
Section B: Proof of Theorem 3, which is the main result of this paper.
Section C: Lower bound on the calibration function for the tree-structured loss.
Section D: Derivations for the mean average precision loss.

A Technical Lemmas

In this section, we prove two technical lemmas that are used in the proofs of the main theoretical
claims of the paper. These two lemmas are the generalizations of the two corresponding lemmas
of [14].

Lemma 7 computes the excess of the weighted surrogate risk δφ for the quadratic loss Φquad (11),
which is central to our analysis presented in Section 4. Lemma 7 generalizes Lemma 9 of [14] by
removing the assumption of span(L) ⊆ F . Analogously to Lemma 9 [14], the key property of this
result is that the excess δφ is jointly convex w.r.t. the parameters θ and conditional distribution q,
which allows further analysis.

Lemma 8 allows to cope with the combinatorial aspect of the calibration function computation.
In particular, when the excess of the weighted surrogate risk is convex, Lemma 8 reduces the
computation of the calibration function to a set of convex optimization problems, which often can be
solved analytically. Note that our Lemma 8 is slightly different from Lemma 10 of Osokin et al. [14]
to deal with the difference of the definition of the excess population risk (6).
Lemma 7. Consider the quadratic surrogate Φquad (11) defined for a task loss L. Let a subspace of
scores F ⊆ Rk be parametrized by θ ∈ Rr, i.e., f = Fθ ∈ F with F ∈ Rk×r. Then, the excess of
the weighted surrogate loss can be expressed as

δφquad(Fθ, q) := φquad(Fθ, q)− inf
θ′∈Rr

φquad(Fθ′, q) = 1
2k‖Fθ + PFLq‖22,

where PF := F (FTF )†FT is the orthogonal projection on the subspace F = span(F ).

Proof. The proof is almost identical to the proof of Lemma 9 of [14] generalizing it only in the last
equality. By the definition of the quadratic surrogate Φquad (11), we have

φ(f(θ), q) = 1
2k (θTFTFθ + 2θTFTLq) + r(q),

θ∗ := argminθ φ(f(θ), q) = −(FTF )†FTLq,

δφ(f(θ), q) = 1
2k (θTFTFθ + 2θTFTLq + qTLTF (FTF )†FTLq)

= 1
2k‖Fθ + PFLq‖22,

where r(q) denotes the quantity independent of the parameters θ. Note that if the assumption
span(L) ⊆ span(F ) holds we have PFL = L, which is the statement of Lemma 9 [14].

Lemma 8. For any task loss L, a surrogate loss Φ that is continuous and bounded from below, and a
set of scores F , the calibration function can be lower bounded as

HΦ,L,F (ε) ≥ min
i 6=j

Hij(ε), (16)
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where Hij is defined via minimization of the same objective as (7), but w.r.t. a smaller domain:

Hij(ε) = inf
f ,q

δφ(f , q), (17)

s.t. `i(q) ≤ `j(q)− ε,
`i(q) ≤ `c(q), ∀c ∈ Ŷ,
fj ≥ fc, ∀c ∈ Ŷ,
f ∈ F ,
q ∈ ∆m.

Here `c(q) := (Lq)c is the expected loss if predicting label c. The index i represents a label with the
smallest expected loss while the index j represents a label with the largest score.

Proof. We use the notation Fj to define the set of score vectors f where the predictor pred(f) takes
the value j, i.e., Fj := {f ∈ F | pred(f) = j}. The union of the sets Fj , j ∈ Ŷ , equals the whole
set F . Sets Fj might not contain their boundaries because of the usage of a particular tie-breaking
strategy, thus we consider the sets F j := {f ∈ F | fj ≥ fc,∀c ∈ Ŷ}, which are the closures of Fj
if Fj are not empty. It also might happen that because of a particular tie-breaking strategy a set Fj is
empty, while the corresponding F j is not.

If f ∈ Fj , i.e. j = pred(f), then the feasible set of probability vectors q for which a label i is one of
the best possible predictions (i.e. δ`(f , q) = `j(q)− `i(q) ≥ ε) equals

∆m,i,j,ε := {q ∈ ∆m | `i(q) ≤ `c(q),∀c ∈ Ŷ; `j(q)− `i(q) ≥ ε},
because inff ′∈Rk `(f

′, q) = minc∈Ŷ `c(q).

The union of the sets {Fj ×∆m,i,j,ε}i,j∈Ŷ,i6=j exactly equals the feasibility set of the optimization
problem (7)-(8) (note that this is not true for the union of the sets {F j ×∆m,i,j,ε}i,j∈Ŷ,i6=j , which
can be strictly larger), thus we can rewrite the definition of the calibration function as follows:

HΦ,L,F (ε) = min
i,j∈Ŷ
i 6=j

inf
f∈Fj ,

q∈∆m,i,j,ε

δφ(f , q) ≥ min
i,j∈Ŷ
i6=j

inf
f∈Fj ,

q∈∆m,i,j,ε

δφ(f , q) = min
i 6=j

Hij(ε), (18)

which finishes the proof. Note that the inequality of (18) can be not tight only if some Fj is empty,
but the corresponding F j is not (due to continuity of the function δφ(f , q), which follows from
Lemma 27 of [23]).

B Proof of Theorem 3

Theorem 3 (Lower bound on the calibration function HΦquad,L,F (ε)). For any task loss L, its
quadratic surrogate Φquad, and a score subspace F , the calibration function is bounded from below:

HΦquad,L,F (ε) ≥ min
i 6=j

max
v≥0

(εv−ξij(v))2
+

2k‖PF∆ij‖22
, where ξij(v) :=

∥∥ LT(vIk − PF )∆ij

∥∥
∞, (19)

PF is the orthogonal projection on the subspace F , (x)2
+ := [x > 0]x2 is the truncation of the

parabola to its right branch and ∆ij := ei − ej ∈ Rk with ec ∈ Rk being the c-th column of the
identity matrix Ik. By convention, if both numerator and denominator of (19) equal zero the whole
bound equals zero. If only the denominator equals zero then the whole bound equals infinity (the
particular pair of i and j is effectively not considered).

Proof. First, let us assume that the score subspace F is defined as the column space of a matrix F ∈
Rk×r, i.e., f(θ) = Fθ. For technical convenience, we can also assume that F is of the full rank,
rank(F ) = r. Lemma 7 gives us the expression δφquad(Fθ, q) = 1

2k‖Fθ + PFLq‖22 for the excess
surrogate, which is jointly convex w.r.t. a conditional probability vector q and parameters θ.

The optimization problem (7)-(8) is non-convex because the constraint (8) on the excess risk depends
of the predictor function pred(f), see Eq. (1), containing the argmax operation. However, if we
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constrain the predictor to output label j, i.e., fj ≥ fc, ∀c, and the label delivering the smallest
possible expected loss to be i, i.e., (Lq)i ≤ (Lq)c, ∀c, the problem becomes convex because all
the constraints are linear and the objective is convex. Lemma 8 in Appendix A allows to bound the
calibration function with the minimal w.r.t. selected labels i and j optimal value of one of the convex
problems, i.e., HΦquad,L,F (ε) ≥ min

i6=j
Hij(ε), where Hij(ε) is defined as follows:

Hij(ε) = min
θ,q

1
2k‖Fθ + PFLq‖22, (20)

s.t. (Lq)i ≤ (Lq)j − ε,
(Lq)i ≤ (Lq)c, ∀c ∈ Ŷ,
(Fθ)j ≥ (Fθ)c, ∀c ∈ Ŷ,
q ∈ ∆m.

To obtain a lower bound, we relax (20) by removing some of the constraints and arrive at

kHij(ε) ≥ min
θ,q

1
2‖Fθ + PFLq‖22, (21)

s.t. ∆T
ijLq ≤ −ε, (22)

∆T
ijFθ ≤ 0, (23)

1T
mq = 1, (24)
qc ≥ 0, c = 1, . . . ,m. (25)

where ∆T
ijLq = (Lq)i − (Lq)j , ∆T

ijFθ = (Fθ)i − (Fθ)j , and ∆ij = ei − ej ∈ Rk with ec ∈ Rk
being a vector with 1 at position c and zeros elsewhere. Note that the relaxation defined by the
problem (21)-(25) is tighter than the one used in the proof of Theorem 7 [14, Eq. (25)-(27)], because
the latter omitted the simplex constraints (24)-(25).

We now explicitly build a dual problem to the QP (21)-(25). If we used the standard Lagrangian
approach we would have to invert the matrix defining the objective, which is difficult. Instead we
use the dual formulation of Dorn [10, Page 160], which allows to build a dual without inverting any
matrices.9 For the problem (21)-(25), this dual can be written as follows:

kHij(ε) ≥ max
θ,q,vF≥0,vL≥0,u

− 1
2‖Fθ + PFLq‖22 + vLε+ u, (26)

− vLLT∆ij + u1m − LTPFLq − LTFθ ≤ 0m, (27)

− vFFT∆ij − FTLq − FTFθ = 0r. (28)

From the equality (28), we can express FTLq = −vFFT∆ij − FTFθ and substitute it in the
objective (26) and inequality (27). Using the identities PF = F (FTF )−1FT and PFF = F , we
can exclude variables θ, q and get a simpler bound. Note that this step leads to a valid lower bound
because for any vF ≥ 0 there exist feasible values of variables q and θ (we can take simply q = 0,
θ = −vF (FTF )−1FT∆ij). The new bound depends on the three variables only:

kHij(ε) ≥ max
vF≥0,vL≥0,u

− 1
2v

2
F∆T

ijPF∆ij + vLε+ u, (29)

− vLLT∆ij + u1m + vFL
TPF∆ij ≤ 0m. (30)

9Here we show the dual of Dorn [10] for the exact combination of constraints we are using. In the dual
formulation, v and u are the extra variables corresponding to the inequality and equality constraints, respectively.

The primal problem

min
q≥0, θ

1
2

(
qT θT

)(Hqq Hqθ
HT
qθ Hθθ

)(
q
θ

)
,

s.t. Aqq +Aθθ ≥ b
Cqq + Cθθ = d

The dual problem

max
q θ, v≥0, u

− 1
2

(
qT θT

)(Hqq Hqθ
HT
qθ Hθθ

)(
q
θ

)
+ bTv + dTu,

s.t. AT
qv + CT

qu−Hqqq −Hqθθ ≤ 0

AT
θv + CT

θu−HT
qθq −Hθθθ = 0
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Figure 2: Left: An example of the tree-structured loss for the task of multi-class classification. Right:
Illustration of the proof of Lemma 9 (best viewed in color). The thin gray and brown lines show the
absolute values of the components of the vector LT

tree(vI − PFtree)∆ij as functions of v. The bold
blue and green lines correspond to the components at which the maximum value is achieved. The
bold red line shows the resulting norm ‖LT

tree(vI− PFtree)∆ij‖∞.

First, consider the case ∆T
ijPF∆ij = ‖PF∆ij‖22 6= 0. Given that vF ≥ 0 we can change the

variables by introducing v̂F := vF ‖PF∆ij‖22, v := vL/vF , û := u/vF after which we get

kHij(ε) ≥ 1
‖PF∆ij‖22

max
v̂F≥0,v̂L≥0,û

− 1
2 v̂

2
F + v̂F (vε+ û), (31)

− vLT∆ij + û1m + LTPF∆ij ≤ 0m. (32)

The global minimum of this function w.r.t. the variable v̂F can be found analytically: if vε+ û ≥ 0 it
equals 1

2‖PF∆ij‖22
(vε + û)2, and zero otherwise. The constraint (32) on û can be substituted with

û = −
∥∥ LT(vIk − PF )∆ij

∥∥
∞ =: −ξij(v), because we always consider both Hij(ε) and Hji(ε)

when bounding the calibration function.

Now, consider the boundary case of ∆T
ijPF∆ij = ‖PF∆ij‖22 = 0. The problem (29)-(30) be-

comes 1
2 maxv≥0 v(ε + minLT∆ij) implying that the objective equals 0 if ε + minLT∆ij ≤ 0.

Otherwise, the objective equals +∞, which corresponds to the in-feasibility of the constraint (22) of
the primal problem. Note that because we always consider both Hij(ε) and Hji(ε) when bounding
the calibration function we can substitute vmin(LT∆ij) with −ξij(v).

C Lower Bound on the Calibration Function for the Tree-Structured Loss

In this section, we compute the lower bound on the calibration function for the tree-structured loss
defined in Section 5.1.

Lemma 9. For a particular consistency depth s0 and for the corresponding subspace Ftree,s0 , the
projection operator PFtree,s0 at ∆ij is computed as

PFtree,s0∆ij =

{
0, i ∈ B(j),

1
|B(j)|

(∑
k∈B(i) ek −

∑
k∈B(j) ek

)
i /∈ B(j).

(33)

The vectors ξij(v) are computed as

ξij(v) =

{
vρ(i, j) i ∈ B(j),

max{|(v − 1)ρ(i, j)|, |v(ρ(i, j)− η)− (ρ(i, j)− ρ̄)|} i /∈ B(j),
(34)

for η := maxc∈B(i) ρ(i, c) and ρ̄ := 1
|B(j)|

∑
c∈B(i) ρ(i, c). Finally, the following lower bound of the

calibration function for the loss Ltree, its quadratic surrogate Φquad and the score subspace Ftree,s0
holds:

HΦquad,Ltree,Ftree,s0
(ε) ≥ [ε > η] (ν−ρ̄)2

(ν−η2 )2

(ε−η2 )2
+

4b , (35)

where ν := minc/∈B(i) ρ(i, c) > η and b is the number of blocks when the tree is cut at the depth s0.
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Proof. For brevity, we shortcut the notation Ftree,s0 to F , Ftree,s0 to F and Ltree to L. First, we
compute the projection operator PFei and the lower-bound denominator 2k‖PF∆ij‖22. Recall, that
the subspace of allowed scores F defined as span {∑l∈B(j) el|j = 1, . . . , k} is of dimension b. The
vector ei is orthogonal to the b− 1 different vectors

∑
l∈B(j) el, j 6∈ B(i), thus the projection PFei

equals the projection of ei on the vector
∑
l∈B(i) el, which equals 1

s

∑
l∈B(i) el with s := B(i) = k

b .
The projection square norm ‖PF∆ij‖22 equals 2

s = 2b
k if i /∈ B(j) and 0 if i ∈ B(j).

Next, we compute ξij(v) defined as ‖LT(vI − PF )∆ij‖∞. By definition of the loss function, the
element of the loss matrix Lci = (Lei)c equals the tree distance from the leaf i to the leaf c. The
projection operator PFei equals the vector 1

s

∑
l∈B(i) el, therefore (LPFei)c is equal to the average

tree distance from the elements of the block B(i) to c: 1
s

∑
l∈B(i) Llc, which we denote by ρ̄(i, c).

Note that the average distance ρ̄(i, c) is equal for all the leaves c that belong to the same block B(c).
With this notation, we have the following equality:

‖LT(vI − PF )∆ij‖∞ = max
c∈Ŷ
|v(ρ(i, c)− ρ(j, c))− (ρ̄(i, c)− ρ̄(j, c))|. (36)

On the right-hand side, each component is the absolute value of a linear in v function, which equals
zero at v = ρ̄(i,c)−ρ̄(j,c)

ρ(i,c)−ρ(j,c) and the absolute value of the slope equals |ρ(i, c)− ρ(j, c)|. We consider
the cases when the labels i and j are in the same and different blocks separately.

If i and j are in the same block we have that ρ̄(i, c) = ρ̄(j, c) and, by the reverse triangle inequality,
|ρ(i, c) − ρ(j, c)| ≤ ρ(i, j) with the equality holding for c = i or c = j, which implies that
ξij(v) = ‖(LT(vI − PF )∆ij‖∞ = vρ(i, j) for i ∈ B(j).

Now, we study the second case where i and j are in different blocks. We first show that

|ρ̄(i, c1)− ρ̄(j, c1)| ≤ |ρ̄(i, c2)− ρ̄(j, c2)| if c1 /∈ B(i) ∪B(j) and c2 ∈ B(i) ∪B(j). (37)

This inequality is crucial for the proof and holds due to the restriction on tree weights and node
degrees.

In this paragraph, we will show that the left-hand side of the inequality (37) achieves its maximum
when c1 /∈ B(i) ∪B(j) is in the block closest to B(j) (or, due to the loss symmetries, in the block
closest to B(i)). If the lowest common ancestor of i and j is not an ancestor of c1 the difference
of the average distances equals zero due to equality of the paths from the lowest common ancestor
to i and j. Otherwise, there exists c1 /∈ B(i) ∪ B(j) such that the lowest common ancestor of i
and j is an ancestor of c1. Then, ρ̄(j, c1) is minimized and ρ̄(i, c1) is simultaneously maximized for
a component c1 closest to the block B(j). In this case, the left-hand side maximum value equals
ρ̄(i, j)−minc/∈B(j) ρ̄(j, c) because ρ̄(i, j) = ρ̄(i, c1).

The right-hand side of the inequality (37) is the same for any choice of c2 ∈ B(i) ∪ B(j) and is
equal to ρ̄(i, j)− ρ̄(j, c2) for some c2 ∈ B(j). Since the average distance within the block is smaller
than the average distance to any node outside of the block, i.e., minc/∈B(j) ρ̄(j, c) ≥ ρ̄(j, c2) for
c2 ∈ B(j), the inequality (37) holds. The same arguments also show that

|ρ(i, c1)− ρ(j, c1)| ≤ |ρ(i, c2)− ρ(j, c2)| if c1 /∈ B(i) ∪B(j) and c2 ∈ B(i) ∪B(j). (38)

Recall that in our case the infinity norm in (36) equals the component-wise maximum of the absolute
values of the linear functions of v. We will show below that for a small enough v the maximum is
achieved at the components that have the smallest slope |ρ(i, c)− ρ(j, c)| among the ones with the
largest offset |ρ̄(i, c)− ρ̄(j, c)| and from some point for larger values of v the maximum is achieved
at the components with the steepest slope (see Figure 2 right for the illustration).

Consider a leaf c2 ∈ B(i) farthest from the leaf i, i.e., c2 ∈ argmaxc∈B(i) ρ(i, c) (defines the green
line in Figure 2 right). The offset |ρ̄(i, c2)− ρ̄(j, c2)| is the same for all c2 ∈ B(i) and, by (37), is
larger than the offsets of the components c1 /∈ B(i) ∪ B(j). The slope |ρ(i, c2) − ρ(j, c2)| is the
smallest among the components in B(i) ∪B(j). The component c2 of LT(vI− PF )∆ij equals zero
for v∗c2 := ρ̄(j,c2)−ρ̄(i,c2)

ρ(j,c2)−ρ(i,c2) = ρ(i,j)−ρ̄(i,c2)
ρ(i,j)−ρ(i,c2) , where v∗c2 > 1 by definition of c2, i.e., because ρ(i, c2) is

the maximal distance, which is not smaller than the average distance ρ̄(i, c2). Finally, for v ≤ 1 this
component has higher values than the values of the components c /∈ B(i) ∪B(j). Indeed, the latter
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are equal to zero at v = 1 and have smaller offset at v = 0 (thin brown lines in Figure 2 right for
v < 1).

The component i of LT(vI−PF )∆ij has the steepest slope |ρ(i, j)− ρ(i, i)| = ρ(i, j) and the same
offset as in the previous paragraph |ρ̄(i, i)− ρ̄(i, j)| = |ρ̄(i, c2)− ρ̄(j, c2)| (defines the blue line in
Figure 2 right). The component equals zero for v∗i := ρ̄(j,i)−ρ̄(i,i)

ρ(j,i)−ρ(i,i) = ρ(j,i)−ρ̄(i,i)
ρ(j,i) , where v∗i ≤ 1. As

a result, the component i has higher values than the components c /∈ B(i) ∪B(j), since they have
smaller slope |ρ(i, c)− ρ(i, c)| (due to the inequality (38)) and equal zero for v = 1 (thin brown lines
in Figure 2 right for v > 1).

Since all the components c ∈ B(i) ∪ B(j) have the same offset, the maximum is achieved either
at c2 or at i:

‖LT(vI− PF )∆ij‖∞ = max{|vρ(i, j)− (ρ(i, j)− ρ̄)|, |v(ρ(i, j)− η)− (ρ(i, j)− ρ̄)|}, (39)

where η := ρ(i, c2) is the maximal distance within a block and ρ̄ := ρ̄(i, c2) is the average distance
within a block.

Next, we compute maxv≥0(εv−ξij(v))2
+. If i and j are in the same block we have (εv−ξij(v))2

+ =
(v(ε − ρ(i, j)))2

+, which equals zero for ε ≤ ρ(i, j) and +∞ otherwise. If i and j are in different
blocks we have the maximum value of (εv − ξij(v))2

+ equal to +∞ when ε > ρ(i, j). In the case
when ε ≤ ρ(i, j), the maximum is achieved at the intersection point vρ(i, j) − (ρ(i, j) − ρ̄) =

−v(ρ(i, j)− η) + (ρ(i, j)− ρ̄), v = 2(ρ(i,j)−ρ̄)
2ρ(i,j)−η . The maximum value is positive if and only if ε > η

2 ,
so for ε ≤ ρ(i, j) we obtain

max
v≥0

(εv − ξij(v))2
+ = (ρ(i,j)−ρ̄)2

(ρ(i,j)−η2 )2
(ε− η

2 )2
+ (40)

and +∞ otherwise.

Finally, to get the actual lower bound on the calibration function, we compute the minimum with
respect to all labels mini 6=j maxv≥0(εv− ξij(v))2

+. When i and j are in the same block, they deliver
minimum value 0 for ε ≤ ρ(i, j) and the maximum value of ρ(i, j) within a block equals η by
definition of η. For ε > η, the minimum is delivered by i and j in different blocks. For the average
distance within the block, we have ρ̄ ≥ η

2 for the trees with the number of children and the weights
of edges equal at the same depth level, therefore the outer minimum w.r.t. i and j is achieved at the
smallest distance between two blocks ν := mini/∈B(j) ρ(i, j) > η. As a result, we obtain the bound

HΦquad,Ltree,Ftree,s0
(ε) ≥ [ε > η] (ν−ρ̄)2

(ν−η2 )2

(ε−η2 )2
+

4b , (41)

which completes the proof.

In the next lemma, we compute the quantities η, ρ̄, ν using the tree weights { 1
2αs}D−1

s=0 to finish the
computation of the bound (14) of the main paper.

Lemma 10. For a particular consistency depth s0 and the corresponding subspace Ftree,s0 , the
maximum distance within an arbitrary block ηs0 , the minimum distance between a leaf in a block and
a leaf outside the block νs0 and the average distance within a block ρ̄s0 can be computed as follows:

ηs0 = max
i∈B(j)

ρ(i, j) =
D−1∑

s=s0

αs (42)

νs0 = min
i/∈B(j)

ρ(i, j) =
D−1∑

s=s0−1

αs (43)

ρ̄s0 = 1
|B(j)|

∑

i∈B(j)

ρ(i, j) =
D−1∑

s=s0

αs
(
∏s
s′=s0

ds′ )−1
∏s
s′=s0

ds′
. (44)

Proof. The expressions for ηs0 and νs0 immediately follow from the definition of the distance ρ(i, j).
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To obtain the expression for ρ̄s0 , we rewrite the distance ρ(i, j) between leaves i and j in the same
block B(j) as the weighted sum of indicators:

ρ(i, j) =

D−1∑

s=s0

αs[path from i to j contains an edge of depth s]. (45)

Then, we fix a leaf j and compute the number of paths from j to the leaves in B(j) that contain an
edge of depth s. Such paths go through the same node (the ancestor of j at the depth s) on the way
up from node j and go through one of

∏s
s′=s0

ds′ − 1 possible nodes at the depth s on the way down.
From each node of depth s, the path can further go to one of

∏D−1
s′=s+1 ds′ leaves on the way down.

Therefore, there are
(∏s

s′=s0
ds′ − 1

) (∏D−1
s′=s+1 ds′

)
paths that contain an edge of depth s.

Next, we rewrite
∑
i∈B(j) ρ(i, j) using the indicator notation and compute the sum:

∑

i∈B(j)

ρ(i, j) =
D−1∑

s=s0

∑

i∈B(j)

αs[path from j to i contains an edge of depth s] (46)

=
D−1∑

s=s0

αs

(
s∏

s′=s0

ds′ − 1

)(
D−1∏

s′=s+1

ds′

)
. (47)

Since the number of leaves in a block is
∏D−1
s′=s0

ds′ , we have

ρ̄s0 = 1
|B(j)|

∑

i∈B(j)

ρ(i, j) =
D−1∑

s=s0

αs
(
∏s
s′=s0

ds′ )−1
∏s
s′=s0

ds′
, (48)

which finishes the proof.

Note that for tree-depth D = 2 the minimum ν1 equals α0 + α1 = 1. As a result, our calibration
function lower bound coincides with the exact calibration function from [14].

D Derivations for the Mean Average Precision Loss

In this section, we prove several statements about Fsort and LmAP, which are used in Section 5.2.
Lemma 11. The matrix FT

sortFsort has the following form:

(FT
sortFsort)pq =

{
(r − 1)!Hr,2, p = q,

(r − 2)!(H2
r,1 −Hr,2), p 6= q,

(49)

where Hn,m :=
∑n
k=1

1
km is the generalized harmonic number of order m of n. As a result, for

distinct permutations π and ω, the square norm of the projection is equal to

‖PFsort∆πω‖22 = 1
(r−2)!(rHr,2−H2

r,1)

r∑

p=1

(
1

π(p) − 1
ω(p)

)2

. (50)

The condition number κ(Fsort) equals
√
r−1Hr,1√
rHr,2−H2

r,1

.

Proof. By definition, (FT
sortFsort)pq =

∑
σ∈Sr

1
σ(p)σ(q) . We can rewrite the sum as the sum over the

permutations with fixed values σ(p) and σ(q) and then sum over the fixed values. Therefore, the sum
is equal to (r − 1)!Hr,2 when p = q and is equal to (r − 2)!(H2

r,1 −Hr,2) otherwise.

We now have FT
sortFsort = (r − 2)!(rHr,2 − H2

r,1)Ir + (r − 2)!(H2
r,1 − Hr,2)11T. The Sherman-

Woodbury formula for the matrix inversion gives us the sum of the scalar matrix 1
(r−2)!(rHr,2−Hr,1)Ir

and the constant matrix. Since 1TFT
sort∆πω =

∑r
p=1

(
1

π(p) − 1
ω(p)

)
= 0, the square norm of the

projection equals 1
(r−2)!(rHr,2−H2

r,1)
∆T
πωFsortF

T
sort∆πω = 1

(r−2)!(rHr,2−H2
r,1)

∑r
p=1

(
1

π(p) − 1
ω(p)

)2

.
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The condition number of Fsort equals the square root of the ratio between the maximal and minimal
eigenvalues of FT

sortFsort. Subtracting (r − 2)!(rHr,2 − H2
r,1)Ir from FT

sortFsort we get a matrix of
rank 1, which means that r− 1 eigenvalues of FT

sortFsort equal (r− 2)!(rHr,2−H2
r,1). The remaining

eigenvalue corresponds to the eigenvector 1 and equals (r − 1)!H2
r,1. With these eigenvalues we get

the condition number κ(Fsort) =
√
r−1Hr,1√
rHr,2−H2

r,1

.

Lemma 12. The matrix LT
mAPFsort has the following form:

(
LT

mAPFsort

)
y,p

=

{
α(|y|), yp = 1,

β(|y|), yp = 0.
(51)

That is, for each ground-truth value y the matrix row components have only two values that depend
on the Hamming norm |y| := ∑r

p=1 yp, specifically:

α(|y|) =Ar

(
1− |y|−1

r−2

(
1− r

|y|(r−1)

))
−Br

(
3
2
|y|−1
r−2

r−|y|
|y|

)
− Cr

(
r−|y|
|y|(r−1)

)
, (52)

β(|y|) =Ar

(
1− |y|−1

r−2

)
−Br

(
1− 3

2
|y|−1
r−2

)
. (53)

Here Ar = (r − 1)!Hr,1, Br = (r − 2)!(H2
r,1 − Hr,2), Cr = (r − 1)!Hr,2. As a result, for

permutations π and ω, we obtain
(
LT

mAPPFsort∆πω

)
y

= γ(|y|) ((Fsorty)π − (Fsorty)ω) , (54)

where γ(p) = α(p)−β(p)

(r−2)!(rHr,2−H2
r,1)

.

Proof. For brevity, here we denote Fsort by F , Fsort by F and LmAP by L. Following the definitions
of L and F , we explicitly compute the components of LTF :

(
LTF

)
y,s

=
∑

σ∈Sr

(
1− 1

y

r∑

p=1

p∑

q=1

yσ−1(p)yσ−1(q)

p

)
1

σ(s) . (55)

There are exactly (r − 1)! permutations with one fixed element, so we have
∑
σ∈Sr

1
σ(s) = (r −

1)!
∑r
p=1

1
p = (r− 1)!Hr,1 =: Ar. To compute the remaining part of (55), we group the permutation

values σ(k) = t by each t = 1, . . . , r and move the sum over permutations inside the bracket:

− 1
y

∑

σ∈Sr

r∑

p=1

p∑

q=1

yσ−1(p)yσ−1(q)

pσ(s) = − 1
y

r∑

t=1

r∑

p=1

p∑

q=1

∑

σ∈Sr,σ(s)=t

yσ−1(p)yσ−1(q)

pt . (56)

Next, we compute the inner sum
∑
σ∈Sr,σ(s)=t yσ−1(p)yσ−1(q). We rewrite the sum as the sum over

inverse permutations:
∑

σ∈Sr,σ(s)=t

yσ−1(p)yσ−1(q) =
∑

π∈Sr,π(t)=s

yπ(p)yπ(q). (57)

The number of positive terms is different for the two cases of ys = 0 and ys = 1. For ys = 0, using
the Iverson brackets the sum can be rewritten as follows:

∑

π∈Sr,π(t)=s

yπ(p)yπ(q) = [p 6= t] ([q < p & q 6= t]|y|(|y| − 1)(r − 3)! + [q = p]|y|(r − 2)!) .

(58)
We then sum the expression over q = 1, . . . , p:

p∑

q=1

[p 6= t] ([q < p, q 6= t]|y|(|y| − 1)(r − 3)! + [q = p]|y|(r − 2)!) = (59)

[p 6= t] ((p− 1− [t < p])|y|(|y| − 1)(r − 3)! + |y|(r − 2)!) . (60)
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Finally, we multiply the expression by −1
|y|pt and compute the sum over p and t:

− 1
|y|

r∑

t=1

r∑

p=1

1
tp [p 6= t] ((p− 1− [t < p])|y|(|y| − 1)(r − 3)! + |y|(r − 2)!) = (61)

−Ar |y|−1
r−2 + Br

(
1− 3

2
|y|−1
r−2

)
. (62)

Combining with
∑
σ∈Sr

1
σ(s) = Ar we obtain the desired expression for β(|y|).

Now, consider the case of ys = 1. Again, we rewrite the sum as∑

π∈Sr,π(t)=s

yπ(p)yπ(q) = [p = t] ([q < p](|y| − 1)(r − 2)! + [q = p](r − 1)!) (63)

+ [p 6= t] ([q < p & q = t](|y| − 1)(r − 2)!) (64)
+ [p 6= t] ([q < p & q 6= t](|y| − 1)(|y| − 2)(r − 3)!) (65)
+ [p 6= t] ([q = p](|y| − 1)(r − 2)!) , (66)

sum it over q,
p∑

q=1

∑

π∈Sr,π(t)=s

yπ(p)yπ(q) = [p = t] ((p− 1)(|y| − 1)(r − 2)! + (r − 1)!) (67)

+ [p 6= t] ([t < p](|y| − 1)(r − 2)!) (68)
+ [p 6= t] ((p− 1− [t < q])(|y| − 1)(|y| − 2)(r − 3)!) (69)
+ [p 6= t](|y| − 1)(r − 2)!, (70)

and obtain the desired expression by multiplying the latter by −1
|y|pt and summing over p and t. The

last step of the computation is completely analogous to the case yk = 0 and we omit it for brevity.

To compute
(
LTPF∆πω

)
y

, we note that for all permutations π and ω it holds that 1TFT∆πω = 0.
According to Lemma 11 and the Sherman-Woodbury formula, (FTF )−1 is the sum of the scalar
matrix Ir

(r−2)!(rHr,2−H2
r,1)

and the multiple of the rank one matrix 11T. After the multiplication

on FT∆πω , the second term vanishes, so we get (FTF )−1FT∆πω =

∑r
p=1

1
π(p)−

1
ω(p)

(r−2)!(rHr,2−H2
r,1)

. Finally, we

rewrite
(
LTF

)
y,:

as (α(|y|)− β(|y|))y + β(|y|)1. By the same argument, after the vector multipli-

cation, the second component vanishes and we get
(
LTF

(
FTF

)−1
F∆πω

)
y

= (Fy)π−(Fy)ω
(r−2)!(rHr,2−H2

r,1)
,

which finishes the proof.

Lemma 13. For the score set Fsort, we have 2(r−1)!‖PFsort∆πω‖22 = O(r). We also have that γ(|y|)
defined in Lemma 12 with |y| = λr, λ ∈ (0, 1) vanishes as r approaches infinity: γ(|y|) = O( log2 r

r ).
The condition number κ(Fsort) grows as Θ(log r).

Proof. To derive an asymptotic bound for ‖PFsort∆πω‖22, we elaborate on the sum of squares
∑r
p=1

(
1

π(p) − 1
ω(p)

)2

= 2Hr,2 − 2
∑r
p=1

1
π(p)ω(p) ≤ 2Hr,2 and apply the asymptotic bounds

for the harmonic numbers H2
r,1 = Θ(log2 r), Hr,2 = Θ(1):

2(r − 1)!‖PFsort∆πω‖22 = O( (r)!
(r−2)!r ) = O(r) (71)

For the second part of the lemma, we rewrite α(|y|) and β(|y|):
α(|y|) = Ar

(
1− λ(1− 1

r )
)
−Br

3
2 (1− λ)− Cr

1−λ
r + o(1) (72)

β(|y|) = Ar (1− λ)−Br

(
1− 3

2λ
)

+ o(1) (73)

α(|y|)− β(|y|) = Ar
1
r −Br

1
2 − Cr

1−λ
r + o(1) (74)

By definition, we have Ar = Θ((r − 1)! log r), Br = Θ((r − 2)! log2 r), Cr = Θ((r − 1)!), which
gives us

γ(|y|) = α(|y|)−β(|y|)
(r−2)!(rHr,2−H2

r,1)
= O

(
(r−2)! log2 r

(r−1)!

)
= O( log2 r

r ), (75)

what was to be shown.

Finally, the asymptotic bound for the condition number of Fsort trivially follows from its exact
expression in Lemma 11 and the asymptotic bounds for the harmonic numbers.
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ABSTRACT

Bayesian inference is known to provide a general framework for incorporating
prior knowledge or specific properties into machine learning models via carefully
choosing a prior distribution. In this work, we propose a new type of prior distri-
butions for convolutional neural networks, deep weight prior (dwp), that exploit
generative models to encourage a specific structure of trained convolutional filters
e.g., spatial correlations. We define dwp in a form of an implicit distribution and
propose a method for variational inference with such type of implicit priors. In
experiments, we show that dwp improves the performance of Bayesian neural net-
works when training data are limited, and initialization of weights with samples
from dwp accelerates training of conventional convolutional neural networks.

1 INTRODUCTION

Bayesian inference is a tool that, after observing training data, allows to transforms a prior distri-
bution over parameters of a machine learning model to a posterior distribution. Recently, stochastic
variational inference (Hoffman et al., 2013) – a method for approximate Bayesian inference – has
been successfully adopted to obtain a variational approximation of a posterior distribution over
weights of a deep neural network (Kingma et al., 2015). Currently, there are two major directions
for the development of Bayesian deep learning. The first direction can be summarized as the im-
provement of approximate inference with richer variational approximations and tighter variational
bounds (Dikmen et al., 2015). The second direction is the design of probabilistic models, in partic-
ular, prior distributions, that widen the scope of applicability of the Bayesian approach.

Prior distributions play an important role for sparsification (Molchanov et al., 2017; Neklyudov
et al., 2017), quantization (Ullrich et al., 2017) and compression (Louizos et al., 2017; Federici
et al., 2017) of deep learning models. Although these prior distributions proved to be helpful, they
are limited to fully-factorized structure. Thus, the often observed spatial structure of convolutional
filters cannot be enforced with such priors. Convolutional neural networks are an example of the
model family, where a correlation of the weights plays an important role, thus it may benefit from
more flexible prior distributions.

Convolutional neural networks are known to learn similar convolutional kernels on different datasets
from similar domains (Sharif Razavian et al., 2014; Yosinski et al., 2014). Based on this fact, within
a specific data domain, we consider a distribution of convolution kernels of trained convolutional
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networks. In the rest of the paper, we refer to this distribution as the source kernel distribution. Our
main assumption is that within a specific domain the source kernel distribution can be efficiently
approximated with convolutional kernels of models that were trained on a small subset of problems
from this domain. For example, given a specific architecture, we expect that kernels of a model
trained on notMNIST dataset – a dataset of grayscale images – come from the same distribution as
kernels of the model trained on MNIST dataset. In this work, we propose a method that estimates
the source kernel distribution in an implicit form and allows us to perform variational inference with
the specific type of implicit priors.

Our contributions can be summarized as follows:

1. We propose deep weight prior, a framework that approximates the source kernel distribution
and incorporates prior knowledge about the structure of convolutional filters into the prior dis-
tribution. We also propose to use an implicit form of this prior (Section 3.1).

2. We develop a method for variational inference with the proposed type of implicit priors (Sec-
tion 3.2).

3. In experiments (Section 4), we show that variational inference with deep weight prior signif-
icantly improves classification performance upon a number of popular prior distributions in
the case of limited training data. We also find that initialization of conventional convolution
networks with samples from a deep weight prior leads to faster convergence and better feature
extraction without training i.e., using random weights.

2 DEEP BAYES

In Bayesian setting, after observing a dataset D = {x1, . . . , xN} of N points, the goal is to
transform our prior knowledge p(ω) of the unobserved distribution parameters ω to the poste-
rior distribution p(ω | D). However, computing the posterior distribution through Bayes rule
p(ω | D) = p(D |ω)p(ω)/p(D) may involve computationally intractable integrals. This problem,
nonetheless, can be solved approximately.

Variational Inference (Jordan et al., 1999) is one of such approximation methods. It reduces the in-
ference to an optimization problem, where we optimize parameters θ of a variational approximation
qθ(ω), so that KL-divergence between qθ(ω) and p(ω | D) is minimized. This divergence in practice
is minimized by maximizing the variational lower bound L(θ) of the marginal log-likelihood of the
data w.r.t parameters θ of the variational approximation qθ(W ).

L(θ) = LD −DKL(qθ(ω)‖p(ω))→ max
θ

(1)

where LD = Eqθ(ω) log p(D |ω) (2)

The variational lower bound L(θ) consists of two terms: 1) the (conditional) expected log likelihood
LD, and 2) the regularizerDKL(qθ(ω)‖p(ω)). Since log p(D) = L(θ)+DKL(qθ(ω)‖p(ω | D)) and
p(D) does not depend on qθ(w) maximizing of L(θ) minimizes DKL(qθ(ω)‖p(ω | D)). However,
in case of intractable expectations in equation 1 neither the variational lower bound L(θ) nor its
gradients can be computed in a closed form.

Recently, Kingma & Welling (2013) and Rezende et al. (2014) proposed an efficient mini-batch
based approach to stochastic variational inference, so-called stochastic gradient variational Bayes or
doubly stochastic variational inference. The idea behind this framework is reparamtetrization, that
represents samples from a parametric distribution qθ(ω) as a deterministic differentiable function
ω = f(θ, ε) of parameters θ and an (auxiliary) noise variable ε ∼ p(ε). Using this trick we can
efficiently compute an unbiased stochastic gradient ∇θL of the variational lower bound w.r.t the
parameters of the variational approximation.

Bayesian Neural Networks. The stochastic gradient variational Bayes framework has been ap-
plied to approximate posterior distributions over parameters of deep neural networks (Kingma et al.,
2015). We consider a discriminative problem, where dataset D consists of N object-label pairs
D = {(xi, yi)}Ni=1. For this problem we maximize the variational lower bound L(θ) with respect to
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parameters θ of a variational approximation qθ(W ):

L(θ) =
N∑

i=1

Eqθ(W ) log p(yi |xi,W )−DKL(qθ(W )‖p(W ))→ max
θ

(3)

where W denotes weights of a neural network, qθ(W ) is a variational distribution, that allows
reparametrization (Kingma & Welling, 2013; Figurnov et al., 2018) and p(W ) is a prior distri-
bution. In the simplest case qθ(W ) can be a fully-factorized normal distribution. However, more
expressive variational approximations may lead to better quality of variational inference (Louizos &
Welling, 2017; Yin & Zhou, 2018). Typically, Bayesian neural networks use fully-factorized normal
or log-uniform priors (Kingma et al., 2015; Molchanov et al., 2017; Louizos & Welling, 2017).

Variational Auto-encoder. Stochastic gradient variational Bayes has also been applied for building
generative models. The variational auto-encoder proposed by Kingma & Welling (2013) maximizes
a variational lower bound L(θ, φ) on the marginal log-likelihood by amortized variational inference:

L(θ, φ) =

N∑

i=1

Eqθ(zi | xi) log pφ(xi | zi)−DKL(qθ(zi |xi)‖p(zi))→ max
θ,φ

, (4)

where an inference model qθ(zi |xi) approximates the posterior distribution over local latent vari-
ables zi, reconstruction model pφ(xi | zi) transforms the distribution over latent variables to a con-
ditional distribution in object space and a prior distribution over latent variables p(zi). The vanilla
VAE defines qθ(z |x), pφ(x | z), p(z) as fully-factorized distributions, however, a number of richer
variational approximations and prior distributions have been proposed (Rezende & Mohamed, 2015;
Kingma et al., 2016; Tomczak & Welling, 2017). The approximation of the data distribution can then
be defined as an intractable integral p(x) ≈

∫
pφ(x | z)p(z) dz which we will refer to as an implicit

distribution.

3 DEEP WEIGHT PRIOR

In this section, we introduce the deep weight prior – an expressive prior distribution that is based
on generative models. This prior distribution allows us to encode and favor the structure of learned
convolutional filters. We consider a neural network with L convolutional layers and denote param-
eters of l-th convolutional layer as wl ∈ RIl×Ol×Hl×Wl , where Il is the number of input channels,
Ol is the number of output channels, Hl and Wl are spatial dimensions of kernels. Parameters of the
neural network are denoted as W = (w1, . . . wL). A variational approximation qθ(W ) and a prior
distribution p(W ) have the following factorization over layers, filters and channels:

qθ(W ) =

L∏

l=1

Il∏

i=1

Ol∏

j=1

q(wlij | θlij) p(W ) =

L∏

l=1

Il∏

i=1

Ol∏

j=1

pl(w
l
ij), (5)

where wlij ∈ RHl×Wl is a kernel of j-th channel in i-th filter of l-th convolutional layer. We also
assume that qθ(W ) allows reparametrization. The prior distribution p(W ), in contrast to popular
prior distributions, is not factorized over spatial dimensions of the filters Hl,Wl.

For a specific data domain and architecture, we define the source kernel distribution – the distribu-
tion of trained convolutional kernels of the l-th convolutional layer. The source kernel distribution
favors learned kernels, and thus it is a very natural candidate to be the prior distribution pl(wlij)
for convolutional kernels of the l-th layer. Unfortunately, we do not have access to its probability
density function (p.d.f.), that is needed for most approximate inference methods e.g., variational in-
ference. Therefore, we assume that the p.d.f. of the source kernel distribution can be approximated
using kernels of models trained on external datasets from the same domain. For example, given a
specific architecture, we expect that kernels of a model trained on CIFAR-100 dataset come from the
same distribution as kernels of the model trained on CIFAR-10 dataset. In other words, the p.d.f. of
the source kernel distribution can be approximated using a small subset of problems from a specific
data domain. In the next subsection, we propose to approximate this intractable probability density
function of the source kernel distribution using the framework of generative models.

3
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Algorithm 1 Stochastic Variational Inference With Implicit Prior Distribution
Require: dataset D = {(xi, yi)}Ni=1

Require: variational approximations q(w | θlij) and reverse models r(z |w;ψl)
Require: reconstruction models p(w | z;φl), priors for auxiliary variables pl(z)

while not converged do
M̂ ← mini-batch of objects form dataset D
ŵlij ← sample weights from q(w|θlij) with reparametrization
ẑlij ← sample auxiliary variables from r(z | ŵlij ;ψl) with reparametrization
L̂aux ← LM̂+

∑
l,i,j − log q(ŵlij | θlij)−log r(ẑlij | ŵlij ;ψl)+log pl(ẑ

l
ij)+log p(ŵlij | ẑlij ;φl)

Obtain unbiased estimate ĝ with E[ĝ] = ∇Laux by differentiating L̂aux
Update parameters θ and ψ using gradient ĝ and a stochastic optimization algorithm

end while
return Parameters θ, ψ

3.1 MODEL OF PRIOR DISTRIBUTION

In this section, we discuss explicit and implicit approximations p̂l(w) of the probability density func-
tion pl(w) of the source kernel distribution of l-th layer. We assume to have a trained convolutional
neural network, and treat kernels from the l-th layer of this network wlij ∈ RHl×Wl as samples from
the source kernel distribution of l-th layer pl(w).

Explicit models. A number of approximations allow us to evaluate probability density functions
explicitly. Such families include but are not limited to Kernel Density Estimation (Silverman, 1986),
Normalizing Flows (Rezende & Mohamed, 2015; Dinh et al., 2017) and PixelCNN (van den Oord
et al., 2016). For these families, we can estimate the KL-divergence DKL(q(w | θlij)‖p̂l(w)) and its
gradients without a systematic bias, and then use them for variational inference. Despite the fact that
these methods provide flexible approximations, they usually demand high memory or computational
cost (Louizos & Welling, 2017).

Implicit models. Implicit models, in contrast, can be more computationally efficient, however, they
do not provide access to an explicit form of probability density function p̂l(w). We consider an
approximation of the prior distribution pl(w) in the following implicit form:

p̂l(w) =

∫
p(w | z;φl)pl(z) dz, (6)

where a conditional distribution p(w | z;φl) is an explicit parametric distribution and pl(z) is an
explicit prior distribution that does not depend on trainable parameters. Parameters of the conditional
distribution p(w | z;φl) can be modeled by a differentiable function g(z;φl) e.g. neural network.
Note, that while the conditional distribution p(w | z;φl) usually is a simple explicit distribution, e.g.
fully-factorized Gaussian, the marginal distribution p̂l(w) is generally a more complex intractable
distribution.

Parameters φl of the conditional distribution p(w | z;φl) can be fitted using the variational auto-
encoder framework. In contrast to the methods with explicit access to the probability density, vari-
ational auto-encoders combine low memory cost and fast sampling. However, we cannot obtain
an unbiased estimate the logarithm of probability density function log p̂l(w) and therefore cannot
build an unbiased estimator of the variational lower bound (equation 3). In order to overcome this
limitation we propose a modification of variational inference for implicit prior distributions.

3.2 VARIATIONAL INFERENCE WITH IMPLICIT PRIOR DISTRIBUTION

Stochastic variational inference approximates a true posterior distribution by maximizing the vari-
ational lower bound L(θ) (equation 1), which includes the KL-divergence DKL(q(W )‖p(W )) be-
tween a variational approximation qθ(W ) and a prior distribution p(W ). In the case of simple prior
and variational distributions (e.g. Gaussian), the KL-divergence can be computed in a closed form
or unbiasedly estimated. Unfortunately, it does not hold anymore in case of an implicit prior dis-
tribution p̂(W ) = Πl,i,j p̂l(w

l
ij). In that case, the KL-divergence cannot be estimated without bias.
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z

pl(z)
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ij ŵl

ij

r(z |w; l) p(w | z;�l)

(a) Learning of DWP with VAE (b) Learned filters (c) Samples from DWP

Figure 1: At subfig. 1(a) we show the process of learning the prior distribution over kernels of
one convolutional layer. First, we train encoder r(z |w;φl) and decoder p(w | z;ψl) with VAE
framework. Then, we use the decoder to construct the prior p̂l(w). At subfig. 1(b) we show a batch
of learned kernels of shape 7×7 form the first convolutional layer of a CNN trained on NotMNIST
dataset, at subfig. 1(c) we show samples form the deep weight prior that is learned on these kernels.

To make the computation of the variational lower bound tractable, we introduce an auxiliary lower
bound on the KL-divergence. KL-divergence:

DKL(q(W )‖p̂(W )) =
∑

l,i,j

DKL(q(wlij |θlij)‖p̂l(wlij)) ≤
∑

l,i,j

(
−H(q(wlij | θlij)) +

+Eq(wlij | θlij)
[
DKL(r(z |wlij ;ψl)‖pl(z))− Er(z |wlij ;ψl) log p(wlij | z;φl)

])
= Dbound

KL , (7)

where r(z |w;ψl) is an auxiliary inference model for the prior of l-th layer p̂l(w), The final auxiliary
variational lower bound has the following form:

Laux(θ, ψ) = LD −Dbound
KL ≤ LD −DKL(qθ(W )‖p̂(W )) = L(θ) (8)

The lower bound Laux is tight if and only if the KL-divergence between the auxiliary reverse model
and the intractable posterior distribution over latent variables z given w is zero (Appendix A).

In the case when qθ(w), p(w | z;φl) and r(z |w;ψl) are explicit parametric distributions which can
be reparametrized, we can perform an unbiased estimation of a gradient of the auxiliary variational
lower boundLaux(θ, ψ) (equation 8) w.r.t. parameters θ of the variational approximation qθ(W ) and
parameters ψ of the reverse models r(z |w;ψl). Then we can maximize the auxiliary lower bound
w.r.t. parameters of the variational approximation and the reversed models Laux(θ, ψ) → maxθ,ψ.
Note, that parameters φ of the prior distribution p̂(W ) are fixed during variational inference, in
contrast to the Empirical Bayesian framework (MacKay, 1992).

Algorithm 1 describes stochastic variational inference with an implicit prior distribution. In the case
when we can calculate an entropy H(q) or the divergence DKL(r(z |w;ψl)‖pl(z)) explicitly, the
variance of the estimation of the gradient ∇L̂aux(θ, ψ) can be reduced. This algorithm can also be
applied to an implicit prior that is defined in the form of Markov chain:

p̂(w) =

∫
dz0 . . . dzT p(w | zT )p(z0)

T−1∏

t=0

p(zt+1 | zt), (9)

where p(zt+1 | zt) is a transition operator (Salimans et al., 2015), see Appendix A. We provide more
details related to the form of p(w | z;φl), r(z |w;ψl) and pl(z) distributions in Section 4.

3.3 LEARNING DEEP WEIGHT PRIOR

In this subsection we explain how to train deep weight prior models for a particular problem. We
present samples from learned prior distribution at Figure 1(c).

Source datasets of kernels. For kernels of a particular convolutional layer l, we train an individual
prior distribution p̂l(w) =

∫
p(w | z;φl)pl(z) dz. First, we collect a source dataset of the kernels

of the l-th layer of convolutional networks (source networks) trained on a dataset from a similar
domain. Then, we train reconstruction models p(w | z;φl) on these collected source datasets for

5
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(b) Results for CIFAR-10

Figure 2: For different sizes of training set of MNIST and CIFAR-10 datasets, we demonstrate the
performance of variational inference with a fully-factorized variational approximation with three
different prior distributions: deep weight prior (dwp), log-uniform, and standard normal. We found
that variational inference with a deep weight prior distribution achieves better mean test accuracy
comparing to learning with standard normal and log-uniform prior distributions.

each layer, using the framework of variational auto-encoder (Section 2). Finally, we use the recon-
struction models to construct priors p̂l(w) as shown at Figure 1(a). In our experiments, we found
that regularization is crucial for learning of source kernels. It helps to learn more structured and
less noisy kernels. Thus, source models were learned with L2 regularization. We removed kernels
of small norm as they have no influence upon predictions (Molchanov et al., 2017), but they make
learning of the generative model more challenging.

Reconstruction and inference models for prior distribution. In our experiments, inference mod-
els r(z |w;ψl) are fully-factorized normal-distributions N (z |µψl(w), diag(σ2

ψl
(w))), where pa-

rameters µψl(w) and σψl(w) are modeled by a convolutional neural network. The convolutional
part of the network is constructed from several convolutional layers that are alternated with ELU
(Clevert et al., 2015) and max-pooling layers. Convolution layers are followed by a fully-connected
layer with 2 · zldim output neurons, where zldim is a dimension of the latent representation z, and is
specific for a particular layer.

Reconstruction models p(w | z;φl) are also modeled by a fully-factorized normal-distribution
N (w |µφl(z), diag(σ2

φl
(z))) and network for µφl and σ2

φl
has the similar architecture as the in-

ference model, but uses transposed convolutions. We use the same architectures for all prior models,
but with slightly different hyperparameters, due to different sizes of kernels. We also use fully-
factorized standard Gaussian prior pl(zi) = N (zi | 0, 1) for latent variables zi. We provide a more
detailed description at Appendix F.

4 EXPERIMENTS

We apply deep weight prior to variational inference, random feature extraction and initialization of
convolutional neural networks. In our experiments we used MNIST (LeCun et al., 1998), NotM-
NIST (Bulatov, 2011), CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009) datasets. Exper-
iments were implemented1 using PyTorch (Paszke et al., 2017). For optimization we used Adam
(Kingma & Ba, 2014) with default hyperparameters. We trained prior distributions on a number
of source networks which were learned from different initial points on NotMNIST and CIFAR-100
datasets for MNIST and CIFAR-10 experiments respectively.

4.1 CLASSIFICATION

In this experiment, we performed variational inference over weights of a discriminative convolu-
tional neural network (Section 3) with three different prior distributions for the weights of the con-
volutional layers: deep weight prior (dwp), standard normal and log-uniform (Kingma et al., 2015).
We did not perform variational inference over the parameters of the fully connected layers. We used

1 The code is available at https://github.com/bayesgroup/deep-weight-prior
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Figure 3: We study the influence of initialization of convolutional filters on the performance of
random feature extraction. In the experiment, the weights of convolutional filters were initialized
randomly and fixed. The initializations were sampled from deep weight prior (dwp), learned filters
(filters) and samples from Xavier distribution (xavier). We performed the experiment for different
size of the model, namely, to obtain models of different sizes we scaled a number of filters in all
convolutional layers linearly by k. For every size of the model, we averaged results by 10 runs.
We found that initialization with samples from deep weight prior and learned filters significantly
outperform Xavier initialization. Although, initialization with filters performs marginally better,
dwp does not require to store a potentially big set of all learned filters. We present result for MNIST
and CIFAR-10 datasets at sub figs. 3(a) and 3(b) respectively.

a fully-factorized variational approximation with additive parameterization proposed by Molchanov
et al. (2017) and local reparametrization trick proposed by Kingma et al. (2015). Note, that our
method can be combined with more complex variational approximations, in order to improve varia-
tional inference.

On MNIST dataset we used a neural network with two convolutional layers with 32, 128 filters of
shape 7 × 7, 5 × 5 respectively, followed by one linear layer with 10 neurons. On the CIFAR
dataset we used a neural network with four convolutional layers with 128, 256, 256 filters of shape
7 × 7, 5 × 5, 5 × 5 respectively, followed by two fully connected layers with 512 and 10 neurons.
We used a max-pooling layer (Nagi et al., 2011) After the first convolutional layer. All layers were
divided with leaky ReLU nonlinearities (Nair & Hinton, 2010).

At figure 2 we report accuracy for variational inference with different sizes of training datasets and
prior distributions. Variational inference with deep weight prior leads to better mean test accuracy,
in comparison to log-uniform and standard normal prior distributions. Note that the difference gets
more significant as the training set gets smaller.

4.2 RANDOM FEATURE EXTRACTION

Convolutional neural networks produce useful features even if they are initialized randomly (Saxe
et al., 2011; He et al., 2016; Ulyanov et al., 2017). In this experiment, we study an influence of differ-
ent random initializations of convolutional layers – that is fixed during training – on the performance
of convolutional networks of different size, where we train only fully-connected layers. We use three
initializations for weights of convolutional layers: learned kernels, samples from deep weight prior,
samples from Xavier distribution (Glorot & Bengio, 2010). We use the same architectures as in
Section 4.1. We found that initializations with samples from deep weight prior and learned kernels
significantly outperform the standard Xavier initialization when the size of the network is small.
Initializations with samples form deep weight prior and learned filters perform similarly, but with
deep weight prior we can avoid storing all learned kernels. At Figure 3, we show results on MNIST
and CIFAR-10 for different network sizes, which are obtained by scaling the number of filters by k.

4.3 CONVERGENCE

Deep learning models are sensitive to initialization of model weights. In particular, it may influence
the speed of convergence or even a local minimum a model converges to. In this experiment, we
study the influence of initialization on the convergence speed of two settings: a variational auto-
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Figure 4: We found that initialization of weights of the models with deep weight priors or learned
filters significantly increases the training speed, comparing to Xavier initialization. At subplot 4(a)
we report a variational lower bound for variational auto-encoder, at subplots 4(b) and 4(c) we report
accuracy for convolution networks on MINTS and CIFAR-10.

encoder on MNIST, and convolutional networks on MNIST and CIFAR-10. We compare three
different initializations of weights of conventional convolutional layers: learned filters, samples
from deep weight prior and samples form Xavier distribution.

Figure 4 provides the results for a convolutional variational auto-encoder trained on MNIST and for
a convolutional classification network trained on CIFAR-10 and MNIST. We found that deep weight
prior and learned filters initializations perform similarly and lead to significantly faster convergence
comparing to standard Xavier initialization. Deep weight prior initialization however does not re-
quire us to store a possibly large set of filters. Also, we plot samples from variational auto-encoders
at a different training steps Appendix E.

5 RELATED WORK

The recent success of transfer learning (Yosinski et al., 2014) shows that convolutional networks
produce similar convolutional filters while being trained on different datasets from the same domain
e.g. photo-realistic images. In contrast to Bayesian techniques (Kingma et al., 2015; Kochurov et al.,
2018), these methods do not allow to obtain a posterior distribution over parameters of the model,
and in most cases, they require to store convolutional weights of pre-trained models and careful
tuning of hyperparameters.

The Bayesian approach provides a framework that incorporates prior knowledge about weights of a
machine learning model by choosing or leaning a prior distribution p(w). There is a huge amount of
works on prior distributions for Bayesian inference (MacKay, 1992; Williams, 1995), where empir-
ical Bayes – an approach that tunes parameters of the prior distribution on the training data – plays
an important role (MacKay, 1992). These methods are widely used for regularization and sparsifica-
tion of linear models (Bishop & Tipping, 2003), however, applied to deep neural networks (Kingma
et al., 2015; Ullrich et al., 2017), they do not take into account the structure of the model weights,
e.g. spatial correlations, which does matter in case of convolutional networks. Our approach allows
to perform variational inference with an implicit prior distribution, that is based on previously ob-
served convolutional kernels. In contrast to an empirical Bayes approach, parameters φ of a deep
weight prior (equation 6) are adjusted before the variational inference and then remain fixed.

Prior to our work implicit models have been applied to variational inference. That type of mod-
els includes a number of flexible variational distributions e.g., semi-implicit (Yin & Zhou, 2018)
and Markov chain (Salimans et al., 2015; Lamb et al., 2017) approximations. Implicit priors have
been used for introducing invariance properties (Nalisnick & Smyth, 2018), improving uncertainty
estimation (Ma et al., 2018) and learning meta-representations within an empirical Bayes approach
(Karaletsos et al., 2018).

In this work, we propose to use an implicit prior distribution for stochastic variational inference
(Kingma et al., 2015) and develop a method for variational inference with the specific type of implicit
priors. The approach also can be generalized to prior distributions in the form of a Markov chain.
We show how to use this framework to learn a flexible prior distribution over kernels of Bayesian
convolutional neural networks.
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6 DISCUSSION & CONCLUSION

In this work we propose deep weight prior – a framework for designing a prior distribution for
convolutional neural networks, that exploits prior knowledge about the structure of learned convo-
lutional filters. This framework opens a new direction for applications of Bayesian deep learning, in
particular to transfer learning.

Factorization. The factorization of deep weight prior does not take into account inter-layer de-
pendencies of the weights. Although a more complex factorization might be a better fit for CNNs.
Accounting inter-layer dependencies may give us an opportunity to recover a distribution in the
space of trained networks rather than in the space of trained kernels. However, estimating prior
distributions of more complex factorization may require significantly more data and computational
budget, thus the topic needs an additional investigation.

Inference. An alternative to variational inference with auxiliary variables (Salimans et al., 2015) is
semi-implicit variational inference (Yin & Zhou, 2018). The method was developed only for semi-
implicit variational approximations, and only the recent work on doubly semi-implicit variational
inference generalized it for implicit prior distributions (Molchanov et al., 2018). These algorithms
might provide a better way for variational inference with a deep weight prior, however, the topic
needs further investigation.
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A VARIATIONAL INFERENCE WITH IMPLICIT PRIOR DISTRIBUTION

We consider a variational lower bound L with variational approximation q(w) and prior distribution
defined in a form of Markov chain p(w) =

∫
dz0 . . . dzT p(w | zT )

∏T
t=0 p(zt+1 | zt)p(z0) and joint

distribution p(w, z) = p(w | zT )
∏T
t=0 p(zt+1 | zt)p(z0). Where p(zt+1 | zt) is a transition operator,

and z = (z0, . . . , zT ) (Salimans et al., 2015). Unfortunately, gradients of L cannot be efficiently
estimated, but we construct a tractable lower bound Laux for L:
L = Eq(w) [log p(x |w)p(w)− log q(w)] = Eq(w)Er(z |w) [log p(x |w)p(w)− log q(w)] = (10)

= Eq(w)Er(z |w)

[
log p(x |w)

p(w, z)

p(z |w)

r(z |w)

r(z |w)
− log q(w)

]
= (11)

= Eq(w)Er(z |w)

[
log p(x |w)

p(w, z)

r(z |w)
− log q(w)

]
+ Eq(w)DKL(r(z |w)‖p(z |w)) = (12)

= Laux + Eq(w)DKL(r(z |w)‖p(z |w)) ≥ Laux. (13)

Inequality 13 has a very natural interpretation. The lower bound Laux is tight if and only if the KL-
divergence between the auxiliary reverse model and the posterior intractable distribution p(z |w) is
zero.

The deep weight prior (Section 3) is a special of Markov chain prior for T = 0 and p(w) =∫
p(w | z)p(z)dz. The auxiliary variational bound has the following form:

Laux = Eq(w)Er(z |w)

[
log p(x |w)

p(w | z)p(z)
r(z |w)

− log q(w)

]
= (14)

= Eq(w) [log p(x |w)] +H(q)− Eq(w)

[
DKL(r(z |w)‖p(z)− Er(z |w) log p(w | z))

]
. (15)

where the gradients in equation 14 can be efficiently estimated in case q(w), for explicit distributions
q(w), pφ(w | z), r(z |w) that can be reparametrized.

B THE ESTIMATE OF THE APPROXIMATION GAP WITH IWAE ESTIMATES

Laux(θ, ψ) LIWAE
10000 (θ, ψ) G(θ, ψ) ≥ Laux(θ, ψpl)

nats, ×103 −23.375± 0.230 −9.957 13.418 −128.325± 2.436

Table 1: Comparison of the proposed auxiliary lower bound with IWAE lower bound estimation.

During variational inference with deep weight prior (Algorithm 1) we optimize a new auxiliary
lower bound Laux(θ, ψ) on the evidence lower bound L(θ). However, the quality of such inference
depends on the gap G(θ, ψ) between the original variational lower bound L(θ) and the variational
lower bound in auxiliary space Laux(θ, ψ):

G(θ, ψ) = L(θ)− Laux(θ, ψ). (16)
The gap G(θ, ψ) cannot be calculated exactly, but it can be estimated by using tighter but less
computationally efficient lower bound. We follow Burda et al. (2015) and construct tighter lower
bound LIWAE

K (θ, ψ):

LIWAE
K (θ, ψ) = LD +H(q(W ))+ (17)

+
∑

l,i,j

Eq(wlij |θlij)Ez1,...,zK∼q(z|wlijψl) log

(
1

K

K∑

k=1

p(wlij |zk)pl(zk)

q(zk|wlijψl)

)
. (18)

The estimate LIWAE
K (θ, ψ) converges to L(θ) with K goes to infinity (Burda et al., 2015). We

estimate the gap with K = 10000 as follows:

G(θ, ψ) ≥ LIWAE
10000 (θ, ψ)− Laux(θ, ψ). (19)

The results are presented at the Table 1. In order to show the range of the estimate and the gain
from learning of q(z|wlijψl) we compare results to the value of auxiliary lower bound Laux(θ, ψpl)

computed at the point ψpl where q(z|wlijψpl) ≡ pl(z). The estimate of the gap, however, may be
not very accurate and we consider it as a sanity check.
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Figure 5: For different sizes of training set of MNIST dataset, we demonstrate the performance of
variational inference with a fully-factorized variational approximation with three different prior dis-
tributions: deep weight prior (dwp), log-uniform, standard normal and learned multivariate gaussian.
For more details see Section 4.1.

C UNIVARIATE GAUSSIAN PRIOR

We examined a multivariate normal distribution p̂l(w) = N (w|µl,Σl). We used a closed-form
maximum-likelihood estimation for parameters µl, Σl over source dataset of learned kernels for
each layer. We conducted the same experiment as in Section 4.1 for MNIST dataset for this gaussian
prior, the results presented at Fig. 5. We found that the gaussian prior performs marginally worse
than deep weight prior, log-uniform and standard normal. The gaussian prior could find a bad local
optima and fail to approximate potentially multimodal source distribution of learned kernels.

D VISUALIZATION OF DEEP WEIGHT PRIOR LATENT SPACE

Figure 6: An illustration for Section 4.1. We visualize latent representations of convolutional filters
for ConvNet on NotMNIST. Every point corresponds to mean of latent representation q(z |wi),
where wi is a kernel of shape 7 × 7 from the first convolutional layer, and q(z |wi) is an inference
network with a two-dimensional latent represenation.
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E SAMPLES FORM VARIATIONAL AUTO-ENCODERS

(a) 100 steps (b) 200 steps (c) 300 steps (d) 400 steps (e) 500 steps

Figure 7: An illustration for the Section 4.3 of samples from variational auto-encoder for three
different types of initialization of convolutional layers after 100, 200, 300, 400 and 500 steps of op-
timization. The first row corresponds to deep weight prior initialization, the second to initialization
with learned kernels, and the third to Xavier initialization.

F PRIOR ARCHITECTURES

Encoder5x5 Decoder5x5 Encoder7x7 Decoder7x7
Conv, 64, 3× 3 Conv, 128, 1× 1 Conv, 32, 3× 3 ConvT, 64, 3× 3
Conv, 64, 3× 3 ConvT, 128, 3× 3 Conv, 64, 3× 3 ConvT, 64, 3× 3
Conv, 128, 3× 3 ConvT, 128, 3× 3 Conv, 64, 3× 3 ConvT, 32, 3× 3
Conv, 128, 3× 3 ConvT, 64, 1× 1 2 × Linear, zdim 2 × ConvT, 1, 1× 1
2 × Linear, zdim 2 × Conv, 1, 1× 1
= 260040 params = 304194 params = 56004 params = 56674 params

Table 2: Architectures of variational auto-encoders for prior distributions. On the left for filters of
shapes 5× 5 and for filters of shape 7× 7 on the right. See more details at Section 4 and Appendix
H.1. All layers were divided with ELU non-literary.

G NETWORK ARCHITECTURES

Classification MNIST Classification CIFAR Variational Auto-encoder MNIST
Conv, 32, 7× 7 Conv2d, 128, 7× 7 Conv2d, 64, stride 2, 7× 7

Conv, 128, 5× 5 Conv2d, 256, 5× 5 Conv2d, 128, 5× 5
Linear, 10 Conv2d, 256, 5× 5 2× Linear, zhid

Linear, 512 ConvT, 128, 5× 5
Linear, 10 ConvT, 64, stride 2, 5× 5

ConvT, 1, stride 2, 5× 5
= 115658 params = 5759498 params = 1641665 params

Table 3: Network Architectures for MNIST and CIFAR-10/CIFAR-100 datasets (Section 4).

14

72



Published as a conference paper at ICLR 2019

H PYTORCH ARCHITECTURES

H.1 VAE PRIORS

• VAE model for 7x7 kernels (zdim = 2, 300 epochs, Adam optimizer with linear learning rate
decay from 1e-3 to 0.):

VAE(
(encoder): Encoder7x7(
(features): Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))
(1): ELU(alpha=1.0)
(2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))
(3): ELU(alpha=1.0)
(4): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
(5): ELU(alpha=1.0))

(fc_mu): Conv2d(64, 2, kernel_size=(1, 1), stride=(1, 1))
(fc_var): Conv2d(64, 2, kernel_size=(1, 1), stride=(1, 1)))

(decoder): Decoder7x7(
(decoder): Sequential(
(0): ConvTranspose2d(2, 64,
kernel_size=(3, 3), stride=(1, 1))
(1): ELU(alpha=1.0)
(2): ConvTranspose2d(64, 64,
kernel_size=(3, 3), stride=(1, 1))
(3): ELU(alpha=1.0)
(4): ConvTranspose2d(64, 32,
kernel_size=(3, 3), stride=(1, 1))
(5): ELU(alpha=1.0))

(fc_mu): Conv2d(32, 1, kernel_size=(1, 1), stride=(1, 1))
(fc_var): Conv2d(32, 1, kernel_size=(1, 1), stride=(1, 1))))

• VAE model for 5x5 kernels (zdim = 4, 300 epochs, Adam optimizer with linear learning rate
decay from 1e-3 to 0.):

VAE(
(encoder): Encoder5x5(
(features): Sequential(
(0): Conv2d(1, 64, kernel_size=(3, 3),
stride=(1, 1), padding=(1, 1))
(1): ELU(alpha=1.0)
(2): Conv2d(64, 64, kernel_size=(3, 3),
stride=(1, 1), padding=(1, 1))
(3): ELU(alpha=1.0)
(4): Conv2d(64, 128, kernel_size=(3, 3),
stride=(1, 1))
(5): ELU(alpha=1.0)
(6): Conv2d(128, 128, kernel_size=(3, 3),
stride=(1, 1))
(7): ELU(alpha=1.0))

(fc_mu): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
(fc_sigma): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1)))

(decoder): Decoder5x5(
(activation): ELU(alpha=1.0)
(decoder): Sequential(
(0): Conv2d(4, 128, kernel_size=(1, 1), stride=(1, 1))
(1): ELU(alpha=1.0)
(2): ConvTranspose2d(128, 128,
kernel_size=(3, 3), stride=(1, 1))
(3): ELU(alpha=1.0)
(4): ConvTranspose2d(128, 128,
kernel_size=(3, 3), stride=(1, 1))
(5): ELU(alpha=1.0)
(6): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1))
(7): ELU(alpha=1.0))

(fc_mu): Sequential(
(0): Conv2d(64, 1, kernel_size=(1, 1), stride=(1, 1)))

(fc_var): Sequential(
(0): Conv2d(64, 1, kernel_size=(1, 1), stride=(1, 1))

)))
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H.2 NOTMNIST-MNIST

• Source models trained on notMNIST (l2=1e-3, 100 epochs, Adam optimizer with linear learn-
ing rate decay from 1e-3 to 0.) look as follows:

FConvMNIST(
(features): Sequential(
(conv1): Conv2d(1, 256, kernel_size=(7, 7), stride=(1, 1))
(relu1): LeakyReLU(negative_slope=0.01)
(mp1): MaxPool2d(kernel_size=2,
stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(256, 512, kernel_size=(5, 5), stride=(1, 1))
(relu2): LeakyReLU(negative_slope=0.01)
(mp2): MaxPool2d(kernel_size=2,
stride=2, padding=0, dilation=1, ceil_mode=False)
(flatten): Flatten())

(classifier): Linear(in_features=4608,
out_features=10, bias=True))

• The final model (deterministic) trained on MNIST looks as follows (Adam optimizer with linear
learning rate decay from 1e-3 to 0.):

FConvMNIST(
(features): Sequential(
(conv1): Conv2d(1, 32, kernel_size=(7, 7), stride=(1, 1))
(relu1): LeakyReLU(negative_slope=0.01)
(mp1): MaxPool2d(kernel_size=2, stride=2,
padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(32, 128, kernel_size=(5, 5), stride=(1, 1))
(relu2): LeakyReLU(negative_slope=0.01)
(mp2): MaxPool2d(kernel_size=2,
stride=2, padding=0, dilation=1, ceil_mode=False)
(flatten): Flatten())

(classifier): Linear(in_features=1152,
out_features=10, bias=True))

• The final model (bayesian) trained on MNIST looks as follows (Adam optimizer with linear
learning rate decay from 1e-3 to 0.):

FConvMNIST(
(features): Sequential(
(conv1): BayesConv2d(
(mean): Conv2d(1, 32, kernel_size=(7, 7), stride=(1, 1))
(var): LogScaleConv2d(1, 32,
kernel_size=(7, 7), stride=(1, 1), bias=False))

(relu1): LeakyReLU(negative_slope=0.01)
(mp1): MaxPool2d(kernel_size=2, stride=2,
padding=0, dilation=1, ceil_mode=False)
(conv2): BayesConv2d(
(mean): Conv2d(32, 128, kernel_size=(5, 5), stride=(1, 1))
(var): LogScaleConv2d(32, 128,
kernel_size=(5, 5), stride=(1, 1), bias=False))

(relu2): LeakyReLU(negative_slope=0.01)
(mp2): MaxPool2d(kernel_size=2,
stride=2, padding=0, dilation=1, ceil_mode=False)
(flatten): Flatten())

(classifier): Linear(in_features=1152,
out_features=10, bias=True))

H.3 CIFAR

• The source model for CIFAR looks as follows (l2=1e-4, 300 epochs, Adam, Linear learning
rate decay from 1e-3 to 0.):

CIFARNet(
(features): Sequential(
(conv1): Conv2d(3, 128, kernel_size=(7, 7), stride=(1, 1))
(bn1): BatchNorm2d(128,

eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

(relu1): LeakyReLU(negative_slope=0.01)
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(maxpool): MaxPool2d(
kernel_size=2, stride=2,
padding=0, dilation=1, ceil_mode=False)

(conv2): Conv2d(128, 256, kernel_size=(5, 5), stride=(1, 1))
(bn2): BatchNorm2d(

256, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

(relu2): LeakyReLU(negative_slope=0.01)
(conv3): Conv2d(256, 256, kernel_size=(5, 5), stride=(1, 1))
(bn3): BatchNorm2d(256,

eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

(relu3): LeakyReLU(negative_slope=0.01)
(conv4): Conv2d(256, 512, kernel_size=(5, 5), stride=(1, 1))
(bn4): BatchNorm2d(512,

eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

(relu4): LeakyReLU(negative_slope=0.01)
(flatten): Flatten())

(classifier): Sequential(
(fc1): Linear(in_features=512, out_features=512, bias=True)
(bn1): BatchNorm1d(512,

eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

(relu1): LeakyReLU(negative_slope=0.01)
(linear): Linear(in_features=512, out_features=100, bias=True)

))

• The final deterministic model (for CIFAR10) looks as follows:
CIFARNetNew(
(features): Sequential(
(conv1): Conv2d(3, 128, kernel_size=(7, 7), stride=(1, 1))
(relu1): LeakyReLU(negative_slope=0.01)
(maxpool): MaxPool2d(kernel_size=2, stride=2,

padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(128, 256, kernel_size=(5, 5), stride=(1, 1))
(relu2): LeakyReLU(negative_slope=0.01)
(conv3): Conv2d(256, 256, kernel_size=(5, 5), stride=(1, 1))
(relu3): LeakyReLU(negative_slope=0.01)
(flatten): Flatten())

(classifier): Sequential(
(fc1): Linear(in_features=6400, out_features=512, bias=True)
(relu1): LeakyReLU(negative_slope=0.01)
(linear): Linear(in_features=512, out_features=10, bias=True)

))

• The final Bayesian model (for CIFAR10) looks as follows:
CIFARNetNew(
(features): Sequential(
(conv1): BayesConv2d(
(mean): Conv2d(3, 128, kernel_size=(7, 7), stride=(1, 1))
(var): LogScaleConv2d(3, 128,
kernel_size=(7, 7), stride=(1, 1), bias=False))

(relu1): LeakyReLU(negative_slope=0.01)
(maxpool): MaxPool2d(kernel_size=2, stride=2, padding=0,
dilation=1, ceil_mode=False)
(conv2): BayesConv2d(
(mean): Conv2d(128, 256, kernel_size=(5, 5), stride=(1, 1))
(var): LogScaleConv2d(128, 256, kernel_size=(5, 5),
stride=(1, 1), bias=False))

(relu2): LeakyReLU(negative_slope=0.01)
(conv3): BayesConv2d(
(mean): Conv2d(256, 256, kernel_size=(5, 5), stride=(1, 1))
(var): LogScaleConv2d(256, 256,
kernel_size=(5, 5), stride=(1, 1), bias=False))

(relu3): LeakyReLU(negative_slope=0.01)
(flatten): Flatten())

(classifier): Sequential(
(fc1): Linear(in_features=6400, out_features=512, bias=True)
(relu1): LeakyReLU(negative_slope=0.01)
(linear): Linear(in_features=512, out_features=10, bias=True)))
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Abstract. The rapid growth of traffic and number of simultaneously available devices leads to the new
challenges in constructing fifth generation wireless networks (5G). To handle with them various schemes
of non-orthogonal multiple access (NOMA) were proposed. One of these schemes is Sparse Code Multiple
Access (SCMA), which is shown to achieve better link level performance. In order to support SCMA
signal decoding channel estimation is needed and sparse Bayesian learning framework may be used to
reduce the requirement of pilot overhead. In this paper we propose a modification of sparse Bayesian
learning based channel estimation algorithm that is shown to achieve better accuracy of user detection
and faster convergence in numerical simulations.
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Abstract—The rapid growth of traffic and number of simulta-
neously available devices leads to the new challenges in construct-
ing fifth generation wireless networks (5G). To handle with them
various schemes of non-orthogonal multiple access (NOMA) were
proposed. One of these schemes is Sparse Code Multiple Access
(SCMA), which is shown to achieve better link level performance.
In order to support SCMA signal decoding channel estimation
is needed and sparse Bayesian learning framework may be used
to reduce the requirement of pilot overhead. In this paper we
propose a modification of sparse Bayesian learning based channel
estimation algorithm that is shown to achieve better accuracy of
user detection and faster convergence in numerical simulations.

Index Terms—5G; SCMA; channel estimation; sparse Bayesian
learning; active user detection

I. INTRODUCTION

A fifth generation (5G) wireless communication standard,
which expected to be commercially used in 2020, includes
support of very diverse applications and tremendous number
of users as a basic part of IoT concept. It must also support
massive connectivity, achieve spectral efficiency and lower
latency [1]. Unfortunately, newly launched Long Term Evo-
lution Advanced (LTE-A) networks are not efficient enough
to meet all requirements that are imposed to 5G systems,
especially in uplink (UL). To deal with them a new Non-
Orthogonal Multiple Access (NOMA) scheme – Sparse Code
Multiple Access (SCMA) was introduced in [2]. As other
NOMA schemes SCMA brings some controllable interference
to implement overloading at the cost of increased receiver
complexity in order to achieve higher spectral efficiency and
massive connectivity [3]. In SCMA systems incoming data
from different streams are directly mapped to the codewords
from multi-dimensional codebooks. Multiple users select their
codebooks and pilots and then transmit their data in pre-
configured resource blocks without preliminary request pro-
cedures. The main advantage of SCMA over another NOMA
schemes is some potential gain of multi-dimensional constel-
lation shaping [4].

The main problem with coherent signal detection is ne-
cessity of channel estimation, because demodulation of re-
ceived signal is possible only after obtaining channel state
information. In SCMA, this question is being studied unlike
traditional digital telecommunication systems. In [5] blind
active user detection with joint message passing algorithm was
introduced. Unfortunately, it makes an assumption that SCMA
layers share the same time-frequency resource block which

isn’t true in general. The other approaches – compressive
sensing detectors with orthogonal matching pursuit [6] and
compressive sampling matching pursuit [7] suffer from severe
performance loss in case of further decreasing of number of
received pilot resources. This problem arises due to convex
relaxation from l0 minimization to l1 minimization [8].

To handle with these problems and to increase overall
frequency efficiency a robust active UE detector based on
Sparse Bayesian Learning was proposed in [9]. In this article,
we modify this approach and achieve better convergence
rate which is important in case of tremendous number of
simultaneously active users as one of the factors that can
increase total decoding speed and as a result decrease latency.
Our numerical simulation results show a five time increase of
convergence rate in case of 36 potential users with 6 active
users and 20 pilots in one fading block. Our algorithm employs
a modified iterative scheme for approximate Bayesian channel
parameter estimation. This modification was first mentioned
in [10] as the one that shows better convergence results in
machine learning problems.

The rest of this paper is organized as follows. The system
model is presented in Section II. Our modification of SBL de-
tector is presented in Section III. Comparison of different user
detectors based on SBL framework performed by numerical
simulation is presented in Section IV. This paper is concluded
in Section V.

II. SYSTEM MODEL

A. SCMA encoding

An SCMA encoding procedure is defined as mapping
from log2(M) bits to a K-dimensional complex codebook
of size M [2]. In the uplink transmission each user has
its own codebook and its data bits are mapped into K-
dimensional complex codeword with N < K non-zero entries
selected from corresponding codebook. After it these bits are
transmitted through K resource elements (REs) (for exam-
ple Orthogonal Frequency-Division Multiple Access resource
elements). In this case one RE is the resource of one sub-
carrier in Orthogonal Frequency-Division Multiplexing and
multiple overlapped SCMA blocks may fit within assigned
time-frequency resources [11]. In the uplink transmission
scheme with SCMA multiple access is achieved through the
sharing of the same time-frequency resources among SCMA
layers of multiple active users [12].
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Signal from U users that arrived through different channels
after the synchronous level multiplexing can be expressed as
[2]

~y =
U∑

u=1

√
Pudiag( ~hu) ~xu + ~n

where xu = [xu,1, xu,2, ..., xu,K ]T is SCMA codeword trans-
mitted by user u, Pu – power of received signal, ~hu =
[hu,1, hu,2, . . . , hu,K ]T – channel vector of user u, ~n – Gaus-
sian ambient noise and cell-off interference.

B. Channel model
In this article we consider system with allocation of SCMA

codewords from N users into one resource block. We assume
time-invariant channel response within range t1 to t2 and block
Rayleigh fading with size of each block equal to B. Total
amount of fading blocks is Q. Within each fading block we
assign Np REs of pilots to identify different users and Nd REs
to transmit SCMA codewords (B = Np+Nd). An active user
pick its pilot sequence and its corresponding codebook during
SCMA UL access.

In one resource block the received pilot vector ~y can be
expressed as follows:

~y = [P1 P2 . . . PN ]




~c1a1

~c2a2

...
~cNaN


+ ~n

where Pn =




~pn,1 0 . . . 0
0 ~pn,2 . . . 0
...

...
. . .

...
0 0 . . . ~pn,Q


 (1 ≤ n ≤ N )

~cn = [cn1 cn2 . . . cnQ]T

and pn,q–n-th pilot sequence of q-th fading block, an ∈
{0, 1}–n-th pilot sequence activity indicator, cn,q–q-th fading
block channel response of active user who picked n-th pilot-
code, ~n – additive white Gaussian noise.

During transmission we make following additional assump-
tions:
• Each user is synchronized in symbol level as well as in

block level
• Only small part of all available users transmit information

simultaneously
• During transmission active user picks a pilot sequence

and its corresponding SCMA codebook according to its
user index or randomly

• Pilot sequences are assigned without repetitions
• For each user channel response within one fading block

is constant
• The size of fading block depends on the channel condition
• Each resourse block is competitively grant-free accessed

by multiple users
It should be mentioned that the number of available pilot

codes must exceed the number of active users in order to
ensure low error rate for user separation.

III. CHANNEL ESTIMATION ALGORITHM

A. Real-valued formulation and notation

In matrix notatin received pilot vector may be expressed as

~y = P~θ + ~n. (1)

Here we have to estimate vector ~θ =
[~c1a1, ~c2a2, . . . , ~cNan]T given ~y and P .

All the entries of (1) are complex-valued and for the sake
of clarity we will reformulate the problem of ~θ estimation in
terms of real-valued vectors and matrices. We use standard
embedding to the real vector spaces:

~yR ←[Re(y1), Im(y1), . . . , Re(yD), Im(yD)]T

~nR ←[Re(n1), Im(n1), . . . , Re(nD), Im(nD)]T

~θR ←[Re(c(1,1)a1), Im(c(1,1)a1), . . . , Re(c(1,Q)a1), Im(c(1,Q)a1),

. . .

Re(c(N,1)aN ), Im(c(N,1)aN ), . . . ,Re(c(N,Q)aN ), Im(c(N,Q)aN )]T

Vector ~θ contains information about channel coefficients for
Q fading blocks for N users. We used double indices to denote
its components, the dimensionality of embedded vector ~θR is
twice the dimensionality of ~θ. The embedding replaces each
complex fading block coefficient with its real and imaginary
parts, so we will use double indices to denote θR components
where the second integer in index now varies from 1 to 2Q.

Each component of P is mapped into 2 × 2 block in real-
valued matrix by the following rule:

PR,2i,2j , PR,2i+1,2j+1 ← Re(Pij)

PR,2i+1,2j ← Im(Pij)

PR,2i,2j+1 ← − Im(Pij)

From now we will operate only with real-valued vectors,
thus with a slight abuse of notation we will use the original
symbols to denote real-valued representations of vectors and
matrices (e.g. ~y instead of ~yR).

B. Probabilistic model

We consider the following probabilistic model of pilots
transmission for SCMA UL detection:

p(~y, ~θ|~γ) = p(~y|~θ)p(~θ|~γ) (2)

This model inherets distribution p(~y|~θ) from the channel
design and introduces a prior distribution p(~θ|~γ) in order to
perform Bayesian inference in the model.

Here the received vector ~y depends on channel parameter
vector ~θ as follows:

p(~y|~θ) = N (~y|P~θ, diag(ρ, ..., ρ))

This distribution both captures linear dependence between ~θ
and ~y, and additive Gaussian noise with variance ρ. We assume
that ρ is a fixed parameter that is known to the receiver.

Prior distribution over ~θ is parametrized by vector ~γ and
defined as follows:
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p(~θ|~γ) =
N∏

n=1

2Q∏

q=1

1√
2πγn

exp

{(
−
θ2

(n,q)

2γn

)}
= N (~θ|0,Γ),

were Γ = diag(γ1, ..., γ1︸ ︷︷ ︸
2Q

, ..., γN , ..., γN︸ ︷︷ ︸
2Q

).

Note that for each user n channel components
(θ(n,1), ..., θ(n,2Q)) have normal distribution with variance
parametrized by γn. If γn → 0, then the components of
distribution concentrates at zero. On the other hand, as γn
becomes larger, the distribution becomes less restrictive. Thus
p(~θ|~γ) is capable to model sparse vectors ~θ with certain
parameters ~γ.

C. Parameter estimation

A standard approach to infer a model parameter or an un-
observed variable with respect to observed data is to compute
it’s posterior distribution via Bayes rule. Given ~γ, one can
easily compute posterior distribution p(~θ|~y,~γ) to estimate ~θ.
However, parameters ~γ are not known, but the estimation
performance dramatically depends on their values.

Bayesian approach for point estimates suggests to select
parameters that maximize model evidence:

~γ∗ = argmax p(~y|~γ)

where evidence is defined by the summation rule:

p(~y|~γ) =

∫
p(~y, ~θ|~γ)p(~θ|~γ)d~θ.

Since the density function p(~y|~γ) is a convolution of two
normal distributions, it has the following form:

p(~y|~γ) =
1

(2π)D
|Σt|−

1
2 exp

(
−1

2
~yTΣ−1

t ~y

)
,

where Σt = 1
2ρI + PΓPT .

Analytical model evidence maximization leads to the system
of non-linear equations, and it is more practical to maximize
a lower bound for evidence via EM-algorithm. Consider the
following log-evidence representation:

log p(~y|γ) = Eq(~θ) log p(~y, ~θ|~γ)+H(q(~θ))+KL(q(~θ)||p(~θ|~y,~γ)).
(3)

Kullback-Leibler divergence KL(q(~θ)||p(~θ|~y,~γ)) is always
non-negative, thus terms L(q(θ), γ) = Eq(~θ) log p(~y, ~θ|~γ) +

H(q(~θ)) form a lower bound for log-evidence. EM-algorithm
iteratevly maximizes the evidence lower bound by minimizing
the third term in 3 and maximizing the first term in 3 is known
as EM-algorithm.

On k-th E-step the algorithm minimizes the third term in
(3) with respect to distribution q(~θ) by setting it to be equal
to

p(~θ|~y,~γ(k)) = N (µθ,Σθ)

~µθ = Γ(k)PT (PΓ(k)PT +
1

2ρ
I)−1~y

Σθ = Γ(k) − Γ(k)PT (PΓ(k)PT +
1

2ρ
I)−1PΓ(k)

for Γ(k) = diag(γ
(k)
1 , ..., γ

(k)
1︸ ︷︷ ︸

2Q

, ..., γ
(k)
N , ..., γ

(k)
N︸ ︷︷ ︸

2Q

).

Indices for ~µθ and Σθ are inherited from indices for ~θ. On
the M-step the first term in (3) is maximized with respect to
~γ. Finding exact maximum of the first term of (3) give us the
following set of equations:

0 = 2Q− 1

γn

2Q∑

q=1

(Σθ(n,q)(n,q) +µ2
θ(n,q)), n = 1, ..., N. (4)

Solving each equation with respect to γn leads to the
following M-step:

γ(k+1)
n =

∑2Q
q=1

(
Σθ(n,q)(n,q) + µ2

θ(n,q)

)

2Q
. (5)

This scheme was proposed [9], yet in the original paper a
different prior p(~θ|~γ) was used and the summation in (5) was
introduced as a heuristic. It turns out that the original scheme
can be represented as EM-algorithm in our probabilistic model.

In this paper we propose to follow the approach of McKay
[10] [13] for the M-step, since it is known to converge faster
in practice. Firstly, we rearrange the terms in (4) as follows:

1

γn

2Q∑

q=1

µ2
θ(n,q) = 2Q− 1

γn

2Q∑

q=1

Σθ(n,q)(n,q). (6)

Let us consider an iterative scheme where new values of
γ

(k+1)
n are evaluated by substituting all entries of γn with γ(k)

n

on the right hand side of 6, substituting γn with γ(k+1)
n on the

left hand side of the equation and solving it with respect to
γ

(k+1)
n . We obtain the following iterative scheme:

γ(k+1)
n =

γ
(k)
n
∑2Q
q=1 µ

2
θ(n,q)

γ
(k)
n 2Q−∑2Q

q=1 Σθ(n,q)(n,q)
. (7)

It is clear that fixed points of this scheme are extreme
points of the evidence lower bound. This M-step defines EM-
algorithm summarized in Algorithm 1.

Complexity of the first algorithm was analyzed in [9], our
detector has the same complexity O(K(D3+(QN)3). Here K
is the maximal number of iterations, D is the dimensionality of
y, Q is number of fading blocks and N is number of potential
users.
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Algorithm 1 SBL-Based Active User Detector and Channel
Estimator for SCMA UL
Require: ~y is a real-valued received vector, P is a real-valued

matrix, ρ defines AWGN variance, ~γinitial is an initial
prior parameter, δ defines decision threshold, K defines
maximal number of iterations

1: function ESTIMATOR(~y, P, ρ,~γinitial, δ,K)
2: ~γ(1) ← ~γinitial

3: for k ← 1 to K do
4: Γ(k) ← diag(γ

(k)
1 , ...γ

(k)
1 , ..., γ

(k)
N , ..., γ

(k)
N )

5: ~µθ ← Γ(k)PT (PΓ(k)PT + 1
2ρI)−1~y

6: Σθ ← Γ(k) − Γ(k)PT (PΓ(k)PT + 1
2ρI)−1PΓ(k)

7: for n← 1 to N do
8: γ

(k+1)
n ←

∑2Q
q=1 µ

2
θ(n,q)

γ
(k)
n 2Q+

∑2Q
q=1 Σθ(n,q)(n,q)

9: if γ(k+1)
n < δ then

10: γ
(k+1)
n ← 0

11: end if
12: end for
13: end for
14: Γ ← diag(γ

(K)
1 , ...γ

(K)
1 , ..., γ

(K)
N , ..., γ

(K)
N )

15: θ̂ ← ΓPT (PΓPT + 1
2ρI)−1~y

16: return θ̂
17: end function

IV. SIMULATION RESULTS

Finally, simulation results are obtained to compare channel
estimation and user detection performance of the proposed
algorithm and the sparse Bayesian estimator from [9].

In our experiments we perform link-level simulation for
uplink transmission in Rayleigh fading channel. We simulate
a SCMA UL system with N = 36 potential and 6 active users.
The total resource block was divided into Q = 5 fading blocks,
within each fading block pilot sequences of 20 elemets were
assigned to each user.

We used the pilot sequences that are used in demodulated
reference signal in LTE systems [14]. We set 6 base pilot
sequences to be Zadoff-Chu sequences and then obtain new
sequences with cyclic shift of base pilot sequences.

We used Mean Square Error (MSE = E
[

(~θ−θ∗)T (~θ−θ∗)
N

]
)

to measure the quality of channel estimation and User Detec-
tion Error Rate (UDER = E

[∑N
n=1[ân 6=an∗ ]

N

]
) to measure the

quality of user detection. Also we analyzed the convergence of
the algorithm with respect to the maximal number of iterations
K.

Figure 1 shows the convergence of mean squared error for
diffefent channel conditions. The simulation results show that
the proposed scheme almost reaches the minimum of mean
squared error several times faster than the original algorithm.
On the other hand, the proposed scheme is less precise at
low signal-to-noise ratios. Figure 2 presents the convergence
of user detection error rate for different channel conditions. It
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Fig. 1. Convergence of the Mean Square Error of channel estimation for
different noise ratios
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Fig. 2. Convergence of the user detection error rate for different noise ratios

can be seen that the proposed scheme has both lower detection
error rate and converges faster.

Figure 3 demonstrates error rate after K = 20 iteration steps
for the original scheme and K = 10, 20 iteration steps for the
proposed scheme with different channel conditions. The sim-
ulation results show that the proposed scheme maintains user
detection improvement even for fewer number of iterations.

V. CONCLUSION

In this paper the improvement of active user detector
based on the theory of sparse Bayesian learning is proposed.
This improvement is inspired by an empirical fact about
EM-algorithm performance in the probabilistic model that
we use. Simulation results are provided to substantiate the
performance improvement of the detector and practical value
of the proposed scheme. Although no theoretical explanations
for this behavior are presented in literature, such explanations
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Fig. 3. User detection error rate after K iterations

and adaptation of faster or approximate procedures to replace
matrix inversion in the algorithm are the directions for future
research.
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Appendix E Article. Well Log Data Standardization, Imputa-
tion and Anomaly Detection Using Hidden Markov
Models
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Abstract. The main goal of this work is to develop a systematic approach to work with raw well log
data. Toaccomplish this goal, we propose to fit a simple unsupervised generative model to the input data
and au-tomate the preprocessing step using the generative model. This approach allows to detect the
anomaliesin the data as the regions that the model struggles to explain (i.e., samples with extremely low
like-lihood), infer approximations to the missing features using the Bayes rule and incorporate additional
expert knowledge in the design of the model.
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Introduction

Data quality today remains the main problem which complicates the usage of machine learning meth-
ods. Well logs can be recorded at different times and drilling conditions by different companies and
tools within beds with different geological settings. This situation makes data preprocessing step, in-
cluding handling missing data, input anomalies detection and standardization of well logs a crucial and
very time-consuming part of any statistical model application. In order to accelerate machine learning
application for real geological tasks appropriate tool for well log data preprocessing is needed.

The main goal of this work is to develop a systematic approach to work with raw well log data. To
accomplish this goal, we propose to fit a simple unsupervised generative model to the input data and au-
tomate the preprocessing step using the generative model. This approach allows to detect the anomalies
in the data as the regions that the model struggles to explain (i.e., samples with extremely low like-
lihood), infer approximations to the missing features using the Bayes rule and incorporate additional
expert knowledge in the design of the model. The contributions of this work are:

• the design of a generative model based on a hidden Markov model which is capable for well log
data normalization based on particular well and geological conditions,

• the development of sub-routines for anomaly detection, data imputation and the development of
heuristics to facilitate the training of the generative model,

• application of the developed model on a real problem of net pay thickness autointerpretation,
where we compare the effect of different preprocessing schemes on the performance of a super-
vised classifier.

Geological settings and input data

As a base for the presented research, we chose one of the Western Siberia mature oilfields located at
Khanty-Mansiisk autonomous district and operated by Gazpromneft. The oilfield is characterized by
the complex geological setting and long life during which well log data were produced by different
companies with different tools and their calibration schemes. Target formation was deposited in a shal-
low marine environment during a transgressive system tract and composed of lithologies from medium
and fine-grained sand to siltstone and mudstone. Each of sub-beds and depositional zones has differ-
ent geological, geophysical and petrophysical properties without any stable marker bed which can be
used as a reference for normalization. As a result, each well needs individual attention during the data
preprocessing step.

Input data included the same set of logs for each of more than 350 wells (GR, SP, neutron, ILD, LLD)
recorded by a different tool in different scales but with the same physical meaning.

Method and Theory

In this work, we chose the hidden Markov model as a generative model for the raw input data. The
temporal structure of HMM allows to capture the vertical continuity of the observed data within the
well, and discrete latent variables can act as a proxy for lithological facies. Eidsvik et al. (2004) applied
hidden Markov models to infer geological attributes from a well log and Schumann (2002) proposed
a well-log classification algorithm that uses the hidden states of HMM. Lindberg and Grana (2015)
showed that the vertical continuity of hidden models can lead to improved facies classification results.

Unlike the previous work, we use the hidden Markov model only as a tool for data preprocessing.
Besides capturing the continuity of well logs, HMMs have other appealing characteristics. First, for a
Gaussian observation model used in Eidsvik et al. (2004) one can infer hidden variables based only on
a subset of logs using marginals of multivariate Gaussian distribution. Then, one can approximate the
missing logs based on the observation model and the inferred latent variables. This provides us with a
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Figure 1 Left: graphical model for the modified HMM. Grey circles represent the observed uncalibrated
variables. Right: schematic representation of the generative process for data, calibrated data (blue) is
produced using the hidden variables (red) and then we observe the uncalibrated data (green) obtained
after a linear transformation.

tool for data imputation that allows applying learning algorithms even on partially missing data. Second,
the observation model can be further extended to incorporate additional knowledge. In our case, the logs
throughout the data did not have a fixed measurement scale, and we modified the default HMM model
to include log calibration as a step of the generative process (see Figure. 1).

Below we describe the proposed model and the heuristics for training in detail.

For each well k∈{1, . . . ,K}we introduce a sequence of M-valued discrete latent variables Zk = (zk
1,z

k
2, . . . ,z

k
Tk

)
to encode the essential soil properties along the well. We assume that for each well the latent vari-
ables form a Markov chain with initial probability distribution π , p(zk

1 = i) = πi and transition prob-
abilities T, p(zk

t = i | zk
t−1 = j) = Ti j. We then assume that there exists a reference measurement

scale, in which the logs follow Gaussian distribution with the parameters specified by the latent vari-
able zk

t : if zk
t = m, x̂k

t ∼ N (µm,Σm). Here the hat sign in x̂k
t indicates the reference measurement

scale and µm ∈ Rd ,Σm ∈ Rd×d are the model parameters. Even though the reference measurement
scale is unknown, we assume that it is constant within a well and can be recovered as a component-
wise linear transformation. In other words, there exists a set of calibration parameters αk,β k ∈ Rd

such, that for the observed logs Xk = (xk
1,x

k
2, . . . ,x

k
Tk

) holds xk
t = αk� x̂k

t + β k. As a consequence, if
zk

t = m, the observed value xk
t has Gaussian distribution with mean αk�µm + β k and covariance matrix

diag(αk)Σm diag(αk)T . For the model parameters Θ =
(
π,T,{αk,β k}K

k=1,{µm,Σm}M
m=1
)

the resulting
joint of the model likelihood is

p(X ,Z|Θ) =
K

∏
k=1

[(
πzk

1

Tk

∏
t=2

Tzk
t ,zk

t−1

)
×

Tk

∏
t=1

N
(

xk
t | αk�µzk

t
+ β k,diag(αk)Σzk

t
diag(αk)T

)
.

]
(1)

To tune the model parameters we use the Baum-Welch algorithm to compute a lower bound on the
marginal likelihood log p(X |Θ) and then apply a gradient ascent optimization scheme to maximize the
lower bound with respect to Θ.

By design, the optimal model parameters are not unique. Indeed, the calibration parameters (αk,β k)
can be adjusted to different choices of the reference measure scale. For example, the change of scale
for the Gaussian parameters (µm,Σm)→ (Cµm,C2Σm) together with the calibration parameters update
(αk,β k)→ (αk

C ,β
k) has no effect of the joint likelihood and, as a result, the model outputs. We do not

put any restrictions on the reference measure scale during training and adjust it after the training.

The training procedure is prone to producing sub-optimal models. Therefore, to avoid poor local optima
during the training, we initialize the calibration parameters αk and β k with the standard deviation and
mean of logs computed across the k-th well. Additionally, to initialize µm we apply mean-std scaler to
logs and then run K-means on the standardized log values. We use cluster means as the initial values of
µm and matrix σ2I as the initial values of Σm for a small σ .
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Results

As we mentioned in the introduction, well logs data is not clean, and the set of performed measurements
can be different in different wells. As a first step, we trained the model on a set of wells for which all
five well logs under consideration present. Figure 2 presents an example with results for one of them.

Figure 2 Example of fitted well. Blue - input well logs, green - data generated by model, lithology -
human interpretation, HMM - hidden states from HMM model.

The number of hidden states in Hidden Markov model is a tunable hyperparameter. We tested different
values in the range from 5 to 100. Choice of the number of states exhibits a trade-off: a larger number of
hidden states results in a better fit of the data but leads to less interpretable states. Experiments showed
that good numbers are 10 for more interpretable model and 30 for a more accurate model. Numbers of
states beyond 30 did not lead to notable improvements.

We used two methods to measure the quality of the trained model. Firstly, it is natural to expect that
hidden states learned by the model should correspond to some lithological properties. Therefore we
compared the states with lithology labels from human interpretation. Contingency matrix for this com-
parison is presented in figure 3. There is no one-to-one correspondence because the number of lithology
types and hidden states is different, but in general, the correspondence looks quite good.

Figure 3 Contingency matrix between human lithology labels and hidden states from model. Number in
each cell represents number of data points which fall in it.

Additionally, using the generative model, we recovered the values of the well logs from the learned
hidden states. For a given hidden state m, we chose the value of well log to be equal to αk� µm + β k.
Comparison of values generated by the model with true values is a good test of model fit. We used the
coefficient of determination R2 as a metric for this comparison. Table 1 presents calculated R2 for the
considered logs. The average coefficient of determination across all logs was R2 = 0.79.

well log GR SP ILD LLD neutron
R2 0.68 0.87 0.91 0.78 0.72

Table 1 Coefficient of determination for different well logs.

One of the benefits of this approach is that the trained model can be applied to automatic detection of
anomalies in the input well logs. Poor fit of the data for a given well compared to other wells strongly
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indicates that the well contains an anomaly. If we look at per well R2 (figure 4), we can see that there
are several wells with particularly low metric value. Manual inspection of these wells showed that these
cases are real anomalies. Severe anomalies can hurt further modeling and should be discarded or handled
manually.

Figure 4 Distribution of per well coefficient of determination R2

We further tested the model as a preprocessing step for the task of net pay intervals classification de-
scribed in Belozerov et al. (2018). The task is to predict for each point in a well whether it belongs to
net pay interval or not. We compare two approaches to the preprocessing. The first is per well scaling
using the mean and the standard deviation of each curve. The second is obtaining calibration parameters
αk and β k from the HMM for rescaling. Recurrent neural networks (GRU - Gated Recurrent Unit) were
used for classification because they are suitable for such structured as a sequence data and show better
performance than more classical non-deep learning models. Due to the imbalance of the target classes,
we use F-score (harmonic mean of precision and recall) to measure the performance. In our experiments,
rescaling with HMM lead to an improvement in performance. F-score of a simple scaler was 0.72, and
for HMM F-score was 0.74.

Finally, we applied the model for data imputation. Some of the wells in the data did not contain ILD and
LLD logs. Nevertheless, the HMM model can infer hidden states in these wells only from the observed
logs and fill missing curves from using the inferred states. We tested this approach on the same task
of net pay intervals classification. F-score on wells with missing logs was 0.37 for training without
imputation. It improved to 0.56 after imputation step, showing the potential of such an approach.

Conclusions

In this work, we applied a generative model based on Hidden Markov model to tasks of well log data
processing. The proposed algorithm showed capability for the solution of a wide range of problems re-
lated to logging data which previously were time-consuming and in many cases could not be automated.
These tasks include well logs reconstruction, data normalization, anomaly detection.

Automating of pointed out tasks by the presented approach can dramatically increase the speed of re-
search and application of machine learning models for well log data and improve its economic effective-
ness.
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