РОССИЙСКАЯ АКАДЕМИЯ НАУК ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ ИМЕНИ Н. Д. ЗЕЛИНСКОГО

На правах рукописи

грачев

Алексей Александрович

СПЕКТРАЛЬНОЕ (ЯМР) И КОНФОРМАЦИОННОЕ ИССЛЕДОВАНИЕ ОЛИГОСАХАРИДОВ, ОТВЕЧАЮЩИХ ФРАГМЕНТАМ ФУКОИДАНОВ

02.00.03 - органическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук Работа выполнена в лаборатории химии гликоконъюгатов Института органической химии им. Н. Д. Зелинского РАН

Научный руководитель: профессор, доктор химических наук Нифантьев Николай Эдуардович

Официальные оппоненты: доктор химических наук Анаников Валентин Павлович доктор химических наук Польшаков Владимир Иванович

Ведущая организация:

Химический факультет Московского Государственного Университета им. М.В. Ломоносова

- ·

Защита диссертации состоится «<u>29</u> » <u>сентября</u> 2006 г. в часов на заседании диссертационного совета К 002.222.01 по присуждению ученой степени кандидата химических наук в Институте органической химии им. Н.Д. Зелинского РАН по адресу: 119991 Москва, Ленинский проспект, 47, конференц-зал.

С диссертацией можно ознакомиться в библиотеке Института органической химии им. И. Д. Зелинского РАН

Автореферат разослан «<u>28</u>» августа 2006 г.

Ученый секретарь диссертационного совета К 002.222.01

доктор химических наук

dequero

Л.А. Родиновская

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Настоящая работа посвящена изучению конформационных свойств олигосахаридных фрагментов фукоиданов – природных полисахаридов, обладающих широким спектром физиологической активности. Известно, что эти биополимеры ингибируют воспаления, оказывают антикоагулянтное и антиангиогенное действие, блокируют бактериальную и вирусную адгезии. Фукоиданы построены преимущественно из α-L-фукопиранозных остатков, связанных в полимерные цепи. При этом для фукоидановых цепей характерио наличие разветвленных фрагментов, большая степень сульфатирования, а также присутствие других углеводных остатков (глюкозы, галактозы, ксилозы, глюкуроновой кислоты).

Наличие физиологической активности у фукоиданов связывают с тем, что отдельные участки их полисахаридных цепей имитируют природные углеводные лиганды белковых рецепторов. Это свойство фукоиданов определяется наличием в их структуре сульфатных групп, которые имеют определенную пространственную ориентацию. Таким образом, для понимания механизма физиологической активности необходимо знать пространственную структуру фукоиданов.

Структурная характеристика природных фукоиданов осложнена из-за их нерегулярности, гетерогенности, а также отсутствия методов их направленного и контролируемого расшепления. Изучение конформационных свойств олигофукозидов является перспективным подходом к установлению взаимосвязи между структурой и свойствами природных фукоиданов.

<u>Целью работы</u> является спектральное (ЯМР) и молекулярно-механическое исследование конформационных свойств олигосахаридных фрагментов фукоиданов, построенных из остатков α-L-фукопиранозны и различающихся длиной цепи (от ди- до гексасахаридов), типом гликозидных связей, количеством и положением сульфатных групп. Выбранный круг олигофукозидов позволяет определить основные структурные и стереохимические факторы, от которых зависит пространственная организация фукоиданов.

<u>Научная новизна и практическая ценность работы.</u> На основании экспериментальных величин трансгликозидных констант спин-спинового взаимодействия ³J_{C,H} и данных молекулярно-механических расчетов впервые проведен конформационный анализ представительного ряда синтетических олигофукозидов, отвечающих основным структурным элементам природных физиологически активных полисахаридов фукоиданов.

В ходе работы исследована область применения величин трансгликозидных констант спин-спинового взаимодействия ³J_{C.H} при проведении систематического конформационного

анализа олигофукозидов. Для определения величин констант была использована новейшая методика двумерной ЯМР-спектроскопии J-HMBC.

В ходе работы показаны существенные различия в конформационных свойствах $(1\rightarrow 3)$ - и $(1\rightarrow 4)$ -связанных дифукозидных фрагментов, являющихся основными структурными элементами фукоидановых цепей. Исследованы конформационные изменения цепей фукоолигосахаридов, вызванных удлинением цепи, введением сульфатных групп и боковых заместителей (создание разветвленных фрагментов). На основании данных конформационного анализа синтетических олигофукозидов предложены пространственные структуры полисахаридных цепей природных фукоиданов.

Для исследуемых олигофукозидов определены специфические характеристики спектров ЯМР, включая химические сдвиги ¹Н и ¹³С ЯМР и эффекты сульфатирования, привлечение которых упростит установление структур новых фукоидановых полисахаридов.

<u>Публикация и впробация работы.</u> По результатам диссертации опубликовано 6 статей. Отдельные части работы были представлены на конкурсе молодых ученых ИОХ РАН (Москва, 2003), Международной конференции "Carbohydrate Workshop" (Борстель, Германия, 2004), III-ей Всероссийской школе-конференции "Химия и биохимия углеводов" (Саратов, 2004) и Международной конференции "NMR in Condensed Matter" (Санкт-Петербург, 2005). Результаты настоящей диссертации являются частью работы "Стереонаправленный синтез, спектроскопический (ЯМР) и конформационный анализ фрагментов фукоиданов", удостоенной медали Российской академии наук (2004) (совместно с Устюжаниной Надеждой Евгеньевной и Гербстом Алексеем Генриховичем).

<u>Объем и структура диссертации.</u> Диссертация изложена на <u>136</u> страницах и состоит из введения, литературного обзора, посвященного методам конформационного анализа углеводов в растворе, обсуждения результатов, экспериментальной части, выводов, списка цитированной литературы и двух приложений.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

1. Целевые соединения и мстоды их исследования.

Различают два основных типа цепей фукоиданов. К первому типу относятся полисахариды, построенные из α -L-фукопиранозных остатков, связанных между собой преимущественно (1 \rightarrow 3)-гликозидными связями. Для фукоиданов второго типа характерно чередование (1 \rightarrow 3)- и (1 \rightarrow 4)-гликозидных связей между α -L-фукопиранозными остатками. В данной работе проведен конформационный анализ представительного ряда синтетических

олигофукозидов¹ (Рисунки 1 и 2), отвечающих фрагментам фукоидановых цепей обоих типов. При этом были рассмотрены олигофукозиды, различающиеся межфукозными связями (1→3, 1→4), числом звеньев в цепи (от 2 до 6), положением сульфатных групп, а также олигофукозиды, содержащие в своей структуре 2,3- и 3,4-разветвленные фрагменты.

Изучение пространственной организации олигофукозидов заключается, в основном, в определении конформационных свойств гликозидных связей, так как фукопиранозные моносахаридные остатки в исследуемых соединениях являются конформационно жесткими и их геометрия хорошо известна. Для установления строения гликозидных связей традиционно используют величины ЯЭО между протонами, принадлежащими соседним моносахаридным остаткам. Однако, в случае тетра- и гексафукозидов, рассматриваемых в данной работе, этот

¹ Синтез исследуемых соединений проведен к.х.н. Устюжаниной Н.Е. (лаборатория химии глюкоконьюгатов ИОХ РАН).

подход оказался неприменимым из-за перекрывания сигналов в спектрах 1D и 2D ЯЭО, а также из-за близости к нулю абсолютных величин ЯЭО для большинства крупных олигосахаридов.

В данной работе была исследована возможность использования величин трансгликозидных констант спин-спинового взаимодействия (КССВ) $J_{C,H}$ для конформационного анализа олигофукозидов. Величины J_{ϕ} и J_{ψ} констант для трансгликозидного фрагмента C-O-C-H углеводов (Рисунок 3) зависят от величин торсионных углов ϕ и ψ и могут быть рассчитаны по уравнению Карплуса (1) (Рисунок 4).

Рисунок 3. Торсионные углы ϕ и ψ при гликозидной связи и соответствующие им КССВ J_{ϕ} и J_{ψ}.

Экспериментальные величины J_φ и J_ψ были измерены при помощи двумерных ЯМРэкспериментов J-HMBC (J-версия гетероядерной корреляционной спектроскопии через несколько связей) и J-resolved (селективная J-модулированная гетероядерная спектроскопия). Методика 2D J-HMBC является одной из наиболее информативных для детектирования дальних протон-углеродных КССВ ⁿJ_{C,H} (где n≥2).

Рисунок 4. Уравнение (1) и график функции Карплуса для определения величин КССВ ${}^{3}J_{c,H}$ во фрагменте ${}^{13}C-O-C-{}^{1}H$ углеводов.

Из спектров J-HMBC нам удалось определить величины констант J_{ψ} для всех гликозидных связей в исследуемых олигофукозидах (Рисунок 5). Однако определение величин констант J_{ϕ} с помощью эксперимента J-HMBC не всегда было возможно из-за перекрывания корреляционных пиков, отвечающих внутри- и межостаточным взаимодействиям. Для определения недостающих величин констант J_{ϕ} был использован селективный 2D J-resolved эксперимент, применение которого проиллюстрировано на рисунке 6.

Нами была проведена оценка ошибки измерения экспериментальных величин ³J_{C,H} констант. С этой целью проводился анализ величин J_{H1,C5}. Двухгранный угол вокруг связи (C-1)—О во фрагменте (H-1)–(C-1)—О–(C-5) фукопиранозных колец в олигосахаридах близок к 180°. Согласно уравнению Карплуса (1), это отвечает характеристичным большим величинам констант J_{H1,C5}, равным ~6.5 Гц. Их корреляционные пики хорошо разрешены как

Рисунок 5. Фрагмент J-HMBC спектра трисахарида 2а, показывающий взаимодействия между атомами углерода С-1 и протонами Н-3. На спектре видно два корреляционных пика, соответствующих двум О-гликозидным связям молекулы. Вдоль вертикальной ¹⁸С-оси корреляционные пики расщеплены в дублеты на величины, пропорциональные константам J_v. Коэффициент пропорциональности в данном случае был равен 37.

Рисунок 6. Фрагмент 2D J-resolved спектра тетрафукозида 3a (слева), содержащий корреляционные пики гликозилированных атомов углеродов С-3. Расщепление сигналов С-3 возникает за счет спинспиновых взаимодействий с протонами H-1⁵ и H-1⁸, облучаемыми в ходе эксперимента 2D J-resolved.

в J-HMBC, так и в J-resolved спектрах. Для каждого соединения нами была сделана выборка величин констант $J_{H1,C5}$ из 2D J-resolved и J-HMBC спектров. Анализ этих величин показывал, что ошибка измерения величин ${}^{3}J_{C,H}$ не превышала 0.5 Гц для обоих методов. С другой стороны, расчет констант в соответствии с уравнением (1) может быть проведен с точностью 1 Гц.

Экспериментальные величины констант были сопоставлены с рассчитанными. Расчет констант проводился исходя из данных молекулярно-механических расчетов² (силовое поле MM3). При этом для каждой гликозидной связи исследуемых соединений была построена конформационная карта, дающая информацию об относительных энергиях конформеров вращения.

Конформационный анализ O-сульфатированных дифукозидов проводился в предположении, что обе сульфатные группы находятся в ионизированном (депротонированном) состоянии. Однако в случае O-сульфатированных три-, тетра- и гексафукозидов рассчитанные величины J_{ϕ} и J_{ψ} расходились с экспериментальными, если все сульфатные группы рассматривались ионизированными. Было найдено, что для этих соединений лучшие результаты получаются, когда сульфатная группа фукопиранозного остатка на восстанавливающем конце молекулы рассматривается в протонированной форме.

Стоит также отметить, что конформационные расчеты проводились без учета молекул растворителя в явном виде (без учета молекулярной структуры раствора). Однако мы предполагали, что молекулы растворителя изменяют диэлектрическую проницаемость среды (є). В расчетах использовалось значение ε=81, соответствующее диэлектрической проницаемости воды.

Эмпирическое уравнение Карплуса (1) позволяет рассчитать величины трансгликозидных КССВ J_{ϕ} и J_{ψ} для каждой точки (ϕ , ψ) конформационного пространства молекулы. Экспериментально получаемые величины J_{ϕ} и J_{ψ} являются усредненными по всем конформерам, существующим в растворе. Такие же усредненные величины могут быть получены из данных конформационного анализа, с помощью распределения Больцмана. Показателем правильности молекулярного моделирования можно считать совпадение полученных из расчета величин трансгликозидных КССВ J_{ϕ} и J_{ψ} с экспериментально определенными.

Данные, полученные в ходе конформационного анализа синтетических олигофукозидов, использовались нами для моделирования пространственных структур природных фукоиданов.

² Молекулярно-механические расчеты проведены А.Г. Гербстом (лаборатория химии гликоконъюгатов ИОХ РАН).

2. Конформационный анализ олигосахаридов, родственных фрагментам гомо-α-(1→3)связанных фукоидановых цепей.

2.1. Молскулярное моделирование соединений 1а-4в. На конформационных картах

соединений **1а-4**в присутствовало два ярко выраженных минимума A и **Б** (Рисунки 7, 8). В конформере A (ϕ =40°, ψ =40°) протон H-1 гликозилирующего остатка равноудален от протонов H-3 и H-4 гликозилируемого остатка, в конформере **Б** (ϕ =30°, ψ =-40°) протон H-1 гликозилирующего остатка сближен с протоном H-3 гликозилируемого остатка.

В случае несульфатированного дифукозида 1а статистические веса конформеров A и Б составляли 60% и 40%, соответственно (Таблица 1). Переход от дифукозида 1а к тетрафукозиду 3а сопровождался увеличением доли конформера A до 100%. Дальнейшее удлинение цепи при переходе от тетрафукозида 3а к гексафукозиду 5а не сопровождалось каким-либо значимым изменением конформаций (1 \rightarrow 3)-связей. Все связи в гексафукозиде существуют в конформации A. Введение (1 \rightarrow 2)-связанного фукозного остатка в (1 \rightarrow 3)-связанную трифукозидную цепь в случае 2,3-разветвленного тетрасахарида 4а также приводило к увеличению доли конформера A (до 100%, Таблица 1) по сравнению с линейным трисахаридом 2а.

Рисунок 7. Конформеры A (φ=40°, ψ=40°) и Б (φ=30°, ψ=-40°) для О-гликозидных связей в α-(1→3)связанных олигофукозидах.

В случае 2-О-сульфатированного дифукозида 16 статистический вес конформера A в конформационном распределении молекулы составлял 55% (Таблица 1). Для α -(1 \rightarrow 3)-связей трисахарида 26, тетрасахарида 36, а также 2,3-разветвленного тетрасахарида 46 теоретические расчеты предсказывали увеличение доли конформера A по сравнению с дисахаридом 16. Эти результаты аналогичны полученным ранее для несульфатированных соединений 1а-5а, что свидетельствует о том, что увеличение доли конформера A в большей степени есть следствие удлинения и разветвления цепей олигофукозидов, чем введения в них сульфатных групп.

Введение 4-О-сульфатной группы в α-L-фукопиранозные остатки уменьшает долю конформера A в конформационном равновесии α-(1→3)-гликозидных связей. Так, для 4-О-

сульфатированного дифукозида 1в доля конформера A составляла 39% (Таблица 1). В случае 4-O-сульфатированных трифукозида 2в и тетрафукозида 3в доля конформера A была еще меньше и составляла порядка 20%. Исключением являлась только $(1\rightarrow 3)$ -связь из 2,3разветвленного фрагмента тетрафукозида 4в, существующая преимущественно в конформации A (Таблица 1). В последнем случае конформер Б является невыгодным из-за стерических взаимодействий $(1\rightarrow 3)$ - и $(1\rightarrow 2)$ -связанных фукопиранозных остатков в 2,3разветвленном фрагменте молекулы.

Рисунок 8. Конформационные карты α-(1→3)-связей в дифукозидах 1а (а) и 1в (б), а также линейных тетрафукозидах 3а (в) и 3в (г).

2.2. Анализ величин констант J_{ϕ} и J_{ψ} для соединений 1а,в-5а. В случае линейных дифукозида 1а, трифукозида 2а и тетрафукозида 3а экспериментальные величины констант J_{ϕ} близки друг другу и равны 3,6±0,3 Гц для всех (1→3)-связей. В то же время, величины J_{ψ} констант в олигофукозидах 1а-3а оказываются зависимыми от длины (1→3)-связанной цепи и позиции соответствующей связи в цепи. Величины J_{ψ} уменьшаются для межостаточных

связей в направлении от невосстанавливающего к восстанавливающему концу молекул (Таблица 2).

Изучение линейного (1 \rightarrow 3)-связанного гексафукозида 5а было осложнено из-за наложения сигналов в 2D ЯМР спектрах J-HMBC и J-resolved. Однако было достоверно установлено, что величины констант J_{ϕ} и J_{ψ} различались для внешних и внутренних дисахаридных фрагментов гексафукозида 5а (Таблица 2). В случае внутренних фрагментов значения J_{ϕ} и J_{ψ} были одинаковы для всех трех гликозидных связей.

Экспериментальные величины констант J_{ϕ} для (1 \rightarrow 3)-гликозидных связей в 2-*O*сульфатированных линейных дифукозиде 16 и трифукозиде 26 близки друг другу и равны 4,1±0,1 Гц (Таблица 2). В случае линейного тетрафукозида 36 экспериментальная величина константы J_{ϕ} для дисахаридного фрагмента на восстанавливающем конце молекулы имеет близкую величину и равна 4,3 Гц. Для двух других дисахаридных фрагментов тетрафукозида 36 величины J_{ϕ} были больше (5,2±0,1 Гц). В то же время величины констант J_{ψ} для олигофукозидов 16-36 увеличиваются для межостаточных связей в направлении от невосстанавливающего к восстанавливающему концу молекул (Таблица 2). Это противоположно тенденции, наблюдаемой в случае несульфатированных олигофукозидов 1а-3а.

В случае 4-О-сульфатированных линейных олигофукозидов **1в-3в** экспериментальные величины констант Ј_φ и Ј_ψ имели близкие значения для всех (1→3)-связей (Таблица 2) и не зависели от расположения последних в молекулах.

Сопоставление экспериментальных и рассчитанных величин констант J_{ϕ} и J_{ψ} для линейных олигофукозидов показывало их хорошее соответствие (расхождение не превыщало 1 Гц) для всех внутренних дисахаридных фрагментов тетрафукозидов За-Зв и гексафукозида 5а, а также для некоторых терминальных звеньев ди-, три- и тетрафукозидов. В то же время в случае сульфатированных олигофукозидов хорошее соответствие наблюдалось для большего числа дисахаридных фрагментов. Однако молекулярно-механические расчеты не показали различия в конформациях дисахаридных фрагментов в несульфатированных и 2-Осульфатированных олигофукозидах (Таблица 1 и 2). По-нашему мнению, такое несоответствие между экспериментальными и рассчитанными данными связано с тем, что молекулярно-механические расчеты воспроизводят конформации терминальных дисахаридных фрагментов в олигофукозидах менее точно, потому что они более конформационно подвижны, чем внутренние фрагменты.

Введение (1→2)-связанного фукозного остатка в (1→3)-связанную трифукозидную цепь в случае 2,3-разветвленных тетрасахаридов **4а-4в** изменяло экспериментальные

Связь		A	Б	-	A	Б		A .	Б
α-L-Fuc-(1→3)-α-L-Fuc-OPr	1a	60%	40%	16	55%	45%	1в	39%	61%
→3)-α-L-Fuc-(1→3)-α-L-Fuc-OPr	2a	80%	20%	26	72%	28%	2в	20%	80%
α -L-Fuc-(1 \rightarrow 3)- α -L-Fuc-(1 \rightarrow		80%	20%		69%	31%		19%	81%
					•				
\rightarrow 3)- α -L-Fuc-(1 \rightarrow 3)- α -L-Fuc-OPr	3a	100%	0%	36	74%	,26%	3в	21%	79%
→3)-a-L-Fuc-(1-→3)-a-L-Fuc-(1-→		100%	0%		72%	28%		23%	77%
α -L-Fuc-(1 \rightarrow 3)- α -L-Fuc-(1 \rightarrow		100%	0%		72%	28%		23%	77%
-→3)-α-L-Fuc-(1→3)-α-L-Fuc-OPr	4 a	100%	0%	46	80%	20%	4в	80%	20%
α-L-Fuc-(1→3)-α-L-Fuc-(1→		100%	0%		75%	25%		40%	60%

Таблица 1. Рассчитанные статистические веса конформеров А и Б для α-(1→3)-связей олигофукозидов 1а-4в.

.

Связь		J _φ , Γα	Ј _ψ , Гц		Ј _ф , Гц	J _ψ , Γц		Ј _ф , Гц	J _ψ , Γц
α-L-Fuc-(1→3)-α-L-Fuc-OPr	1a	3,5 (3,6)	2,6 (3,4)	16	4,1 (3,8)	4,7 (3,4)	18	4,0 (3,8)	5,1 (4,0)
→3)-α-L-Fuc-(1→3)-α-L-Fuc-OPr	2a	3,6 (3,8)	2,2 (3,5)	26	4,1 (3,8)	4,9 (3,1)	2в	3,9 (4,0)	4,8 (4,9)
α-L-Fuc-(1→3)-α-L-Fuc-(1→		3,7 (3,3)	4,3 (3,1)		4,0 (3,6)	2,0 (2,9)		4,4 (4,0)	5,2 (5,0)
→3)-α-L-Fuc-(1→3)-α-L-Fuc-OPr	3a	3,4 (3,6)	1,7 (3,4)	36	4,2 (3,9)	4,8 (4,3)	3в	4,1 (3,8)	5,2 (4,0)
→3)-α-L-Fuc-(1-→3)-α-L-Fuc-(1-→		3,9 (3,6)	2,7 (3,1)		5,2 (4,5)	2,8 (3,0)		4,5 (4,3)	5,4 (5,0)
α-L-Fuc-(1→3)-α-L-Fuc-(1→		3,8 (3,3)	4,3 (3,1)		5,1 (4,5)	1,8 (3,0)		4,1 (4,3)	4,9 (4,7)
→3)-α-L-Fuc-(1→3)-α-L-Fuc-OPr	4a	3,1 (3,0)	3,1 (2,8)	46	4,4 (3,5)	2,8 (3,0)	4в	2,7 (3,1)	3,9 (3,7)
α -L-Fuc-(1- \rightarrow 3)- α -L-Fuc-(1- \rightarrow		3,2 (3,2)	4,0 (3,4)		3,7 (3,4)	4,2 (3,7)		3,7 (3,7)	4,0 (3,5)
α-L-Fuc-(1→2)-α-L-Fuc-OPr		2,2 (3,2)	2,1 (2,8)		2,3 (2,7)	3,7 (3,3)		2,5 (3,0)	2,6 (3,1)
→3)-α-L-Fuc-(1→3)-α-L-Fuc-OPr	5a	5,0 (3,5)	2,0 (3,4)						
\rightarrow 3)- α -L-Fuc-(1 \rightarrow 3)- α -L-Fuc-(1 ^a \rightarrow		4,5° (3,5)	3,6 ⁶ (3,3)			,			
α -L-Fuc-(1 \rightarrow 3)- α -L-Fuc-(1 \rightarrow		4,0 (3,5)	2,1 (3,4)						

Таблица 2. Сопоставление экспериментальных и рассчитанных (в скобках) величин констант Ј_Ф и Ј_Ψ для олигофукозидов 1а,в-5а.

^{*} Сигналы всех интернальных фукозных остатков. ⁶ Ошибка измерения для этих величин была больше из-за перекрывания сигналов в 2D ЯМР спектрах. Полем серого цвета () выделены дисахаридные фрагменты, для которых расхождение между экспериментальными и рассчитанными величинами J₀ и J₄ констант не превышает 1 Гц.

величины обеих J_{ϕ} и J_{ψ} констант для (1 \rightarrow 3)-связей молекул. В то же время, наличие 2,3разветвления делает (1 \rightarrow 3)-связанные дисахаридные фрагменты жестче. Поэтому хорошее соответствие между экспериментальными и рассчитанными величинами J_{ϕ} и J_{ψ} наблюдалось для всех фрагментов (Таблица 2).

3. Конформационный анализ олигосахаридов, родственных фрагментам фукондановых цепей с чередующимися (1→3)- и (1→4)-связями.

3.1. Молекулярное моделирование соединений 1а,6 и 6а,6-10а. Конформационный анализ $(1\rightarrow 3)$ -связанного дифукозида 1а был рассмотрен в разделе 2. Для этого соединения характерны два конформера A и B (Рисунок 7) со статистическими весами 60% и 40%, соответственно. Для $(1\rightarrow 3)$ -связанных дисахаридных фрагментов линейных три- (7а), тетра- (8а) и гексафукозида 9а, согласно расчетам, характерным оказывается только конформер A, с углами $\phi>0$ и $\psi>0$ (Рисунок 9). Эта ситуация аналогична наблюдаемой ранее в случае несульфатированных $(1\rightarrow 3)$ -связанных олигофукозидов 1а-5а (см. раздел 2.1.), для которых удлинение цепи молекулы также приводило к увеличению доли конформера A в конформационном равновесии $(1\rightarrow 3)$ -связей.

Конформационные карты, отвечающие $(1\rightarrow 4)$ -связанным дисахаридным фрагментам соединений **6а-10а** (Рисунок 9), содержали по два ярко выраженных конформационных минимума В и Г (Рисунок 10), для которых средние величины углов равны $\phi=35^{\circ}$ и $\psi=-20^{\circ}$, а также $\phi=20^{\circ}$ и $\psi=-35^{\circ}$, соответственно. В конформере В протон H-1 гликозилирующего остатка оказывается равноудаленным от протона H-4 и протонов метильной группы гликозилируемого остатка, а в конформере Г протоп H-1 пространственно сближен с протоном H-4. Для (1->4)-связанного дифукозида **6а** статистический вес конформера В составлял 70%, однако в случае три- (7а), тетра- (8а) и гексасахарида **9а** его доля была около 45%.

Конформационный анализ 3,4-разветвленного олигофукозида 10а показывал, что для его (1 \rightarrow 3)-гликозидной связи преобладающим является конформер Б (80%), а для (1 \rightarrow 4)связи – конформер Г (93%). Таким образом, переход от линейных олигофукозидов к 3,4разветвленному трифукозиду 10а приводил к увеличению долей конформеров Б и Г для (1 \rightarrow 3)- и (1 \rightarrow 4)-связей, соответственно. Этот эффект вызван стерическими взаимодействиями гликозилирующих остатков в 3,4-разветвленном фрагменте трифукозида 10а.

Рисунок 9. Конформационные карты а-(1->3)-связи (а) и а-(1->4)-связи (б) тетрафукозида 8а.

Конформационные карты 2-О-сульфатированных олигофукозидов 16 и 66-96 были похожи на конформационные карты несульфатированных олигофукозидов 1а и 6а-9а. В случае (1 \rightarrow 3)-связанных дисахаридных фрагментов доля конформера A составляла 55% для дифукозида 16 и 100% для три- (76), тетра- (86) и гексафукозида 96. В случае (1 \rightarrow 4)связанных фрагментов ди- (66), три- (76) и тетрафукозида 86 доля конформера B составляла около 75%, однако в случае гексафукозида 96 она была около 55%.

Рисунок 10. Конформеры В (φ=35°, ψ=20°) и Г (φ=20°, ψ=-35°), характерные для α-(1→4)-связанных дифукозидных фрагментов.

3.2. Анализ величин констант J_{ϕ} и J_{ψ} для соединений 1а,6 и ба,6-10а. Для всех (1→4)связей линейных несульфатированных олигофукозидов 1а и ба-9а экспериментальные величины констант J_{ϕ} и J_{ψ}, равны 3,9±0,1 и 5,8±0,2 Гц (Таблица 3), соответственно. В случае (1→3)-связей соединений 6а-9а экспериментальные величины констант J_{ϕ} также близки между собой и равны 3,5±0,4 Гц, однако величины констант J_{ψ} зависели от положения связи в молекуле. Так, в дифукозиде 1а и трифукозиде 7а (1→3)-связи являются терминальными, для них величины J_{ψ} равны 2,4±0,2 Гц. В случае тетрафукозида 8a и гексафукозида 9a (1→3)связи являются внутренними, для них величины J_{ψ} равны 3,8 Гц. Эта ситуация аналогична наблюдаемой ранее при изучении (1→3)-связанных олигофукозидов (см. раздел 2.2.), для которых величина J_{ψ} также зависела от положения связи в молекуле. Различие в величинах констант J_{ψ} для (1→3)-связей говорит о различии конформаций соответствующих связей.

В случае 2-О-сульфатированных олигофукозидов 66-96 экспериментальные величины констант J_{ϕ} и J_{ψ} близки для всех (1→4)-связей. Их значения равны 4,6±0,3 и 5,4±0,1 Гц для J_{ϕ} и J_{ψ} , соответственно (Таблица 3). В случае (1→3)-связей в соединениях 16 и 66-96 экспериментальные величины констант J_{ϕ} зависели от положения связи в молекуле. В дифукозиде 16 и трифукозиде 76 (1→3)-связи являются терминальными, для них величины J_{ϕ} составляют 4,1 Гц. В случае тетрафукозида 86 и гексафукозида 96 (1→3)-связи являются внутренними, для них величины J_{ϕ} были меньше и равны 3,3±0,1 Гц. В то же время, экспериментальные величины констант J_{ψ} близки между собой для всех (1→3)-связей молекул и лежат в диапазоне 4,7±0,2 Гц. Эта ситуация обратна наблюдаемой в случае несульфатированных олигофукозидов 1а и 7а-9а, для которых величина J_{ψ} зависела от положения (1→3)-связи в молекуле.

Сопоставление экспериментальных и рассчитанных величин трансгликозидных ${}^{3}J_{CH}$ констант для олигофукозидов **1а,6** и **6а,6-10а** в случае (1→3)-связей показывало хорошее соответствие для всех констант (расхождение менее 1 Гц), кроме констант J_{ψ} для внешних дисахаридных фрагментов трифукозида **7а** и дифукозида **16** (Таблица 3). Как было показано в разделе 2.2, внешние (1→3)-связанные дисахаридные фрагменты более конформационно подвижны, чем внутренние, а потому молекулярная механика предсказывает их поведение менее точно.

В случае (1→4)-связей соединений **6а,6-10а** различие между экспериментальными и рассчитанными величинами J_{ϕ} не превышало 1 Гц, однако в случае констант J_{ψ} расхождение в большинстве случаев было больше. Мы связываем это с тем, что молекулярная механика недооценивает вклад конформеров с величинами углов ψ близкими 0° в конформационное равновесие (1→4)-связанных дифукозидных фрагментов. Действительно, для этих фрагментов экспериментальные величины $J_{\psi}=5,4+6,0$ Гц и отвечают максимумам функции Карплуса (Рисунок 4), которые достигаются при величинах углов ψ близких 0° и 160°. Конформеры с углами ψ близкими 160° энергетически невыгодны из-за расталкивания атомов, принадлежащих соседним фукопиранозным остаткам. Таким образом, согласно

Таблица 3. Сопоставление экспериментальных и рассчитанных (в скобках) величин констант J_{ϕ} и J_{ψ} для линейных олигофукозидов **1а**,**б** и **6а**,**б**-9а,**б**, родственных фрагментам фукоидановых цепей с чередующимися (1 \rightarrow 3)- и (1 \rightarrow 4)-связями.

Связь		Ј _ф , Гц	J _ψ , Гц		J _φ , Γц	Ј _ψ , Гц
α-L-Fuc-(1→3)-α-L-Fuc-OPr	1a	3,5 (3,6)	2,6 (3,4)	16	4,1 (3,8)	4,7 (3,4)
α -L-Fuc-(1 \rightarrow 4)- α -L-Fuc-OPr	ба	3,9 (3,7)	5,9 (4,6)	66	4,5 (3,9)	5,3 (4,7)
→4)-α-L-Fuc-(1→3)-α-L-Fuc-OPr	7a	3,1 (3,5)	2,3 (3,7)	76	4,1 (3,9)	4,5 (4,2)
α -L-Fuc-(1 \rightarrow 4)- α -L-Fuc-(1 \rightarrow		3,8 (3,5)	5,9 (4,0)		4,4 (3,8)	5,4 (4,8)
→3)-a-L-Fuc-(1→4)-a-L-Fuc-OPr	8a	3,9 (3,8)	5,6 (4,5)	86	4,9 (3,9)	5,4 (3,9)
\rightarrow 4)- α -L-Fuc-(1 \rightarrow 3)- α -L-Fuc-(1 \rightarrow		3,9 (3,1)	3,8 (3,3)		3,2 (3,5)	4,9 (4,2)
α -L-Fuc-(1 \rightarrow 4)- α -L-Fuc-(1 \rightarrow		3,9 (3,8)	5,6 (4,4)		4,6 (3,8)	5,4 (4,5)
-→3)-α-L-Fuc-(1→4)-α-L-Fuc-OPr	9a	-*(3,9)	6,0 (4,5)	96	4,7 (4,3)	5,5 (4,2)
→4)-α-L-Fuc-(1→3)-α-L-Fuc-(1→		-* (3,5)	3,8 (3,4)		3,4 (3,5)	4,7 (3,8)
\rightarrow 3)- α -L-Fuc-(1 \rightarrow 4)- α -L-Fuc-(1 \rightarrow		~ * (3,8)	6,0 (4,0)		4,5 (4,3)	5,5 (4,5)
\rightarrow 4)- α -L-Fuc-(1 \rightarrow 3)- α -L-Fuc-(1 \rightarrow		-* (3,6)	3,8 (3,5)		3,3 (3,6)	4,7 (3,8)
α -L-Fuc-(1 \rightarrow 4)- α -L-Fuc-(1 \rightarrow		-* (4,0)	6,0 (4,2)		4,4 (4,0)	5,5 (4,2)
			_	-		
α-L-Fuc-(1→4)-α-L-Fuc-OPr	10a	3,9 (3,8)	5,6 (4,5)	.*		
α -L-Fuc-(1 \rightarrow 3)- α -L-Fuc-OPr		39(3.1)	3.8 (3.3)			

^а Определение величин J_{ϕ} констант в случае гексасахарида 9a было невозможно из-за перекрывания сигналов и большого уровня шума в соответствующих областях J-HMBC и Jresolved спектров. Полем серого цвета () выделены дисахаридные фрагменты, для которых расхождение между экспериментальными и рассчитанными величинами констант J_{ϕ} и J_{ψ} не превышает 1 Гц.

экспериментальным данным, для (1→4)-связанных дифукозидных фрагментов характерными оказываются конформеры с углами ψ близкими 0° (Рисунок 11). В этих конформерах протон H-1 гликозилирующего остатка оказывается между протоном H-4 и протонами метильной группы гликозилируемого остатка, однако пространственно протон H-1 более сближен с

протоном H-4. Присутствие в растворе значимого количества конформеров с утлами $|\psi|>0^{\circ}$ приводило бы к уменьшению экспериментальной величины J_{\u03c0} константы. Мы предполагаем, что конформеры с углами ψ близкими 0° стабилизированы за счет сольватационных эффектов.

Стоит также отметить, что введение 2-*O*-сульфатных групп в олигофукозиды с чередующимися $(1\rightarrow 3)$ - и $(1\rightarrow 4)$ -связями изменяет величины трансгликозидных ${}^{3}J_{C,H}$ констант, что говорит об изменении конформаций молекул. При этом в случае сульфатированных олигофукозидов хорошее соответствие между рассчитанными и экспериментальными величинами констант наблюдается для большего числа дисахаридных фрагментов, что связано с увеличением жесткости молекул.

Рисунок 11. Конформер (φ=35°, ψ=0°) для (1→4)связанного дисахаридного фрагмента, согласующийся с экспериментальными данными по величинам констант J_a и J_w.

Хотелось бы еще раз отметить, что согласно данным конформационного анализа внутренние дисахаридные фрагменты тетра- и гексафукозидов являются менее конформационно подвижными, чем внешние фрагменты. Мы предполагаем, что конформации внутренних фрагментов в этих молекулах близки конформациям дисахаридных фрагментов природных фукоиданов. Нами было проведено моделирование пространственных структур фрагментов фукоидановых целей с $(1\rightarrow 3)$ - и чередующимися $(1\rightarrow 3)$ - и $(1\rightarrow 4)$ -гликозидными связями (как в несульфатированной, так и в сульфатированной формах) с использованием конформационных характеристик внутренних дисахаридных фрагментов тетра- и гексафукозидов (Рисунок 12) (о правомочности такого моделирования см. раздел 5). Полученные модели фукоидановых целей будут способствовать пониманию механизма связывания этих молекул с белковыми рецепторами.

4. Анализ эффектов сульфатирования для соединений 16,в-96. Эффект сульфатирования (ΔδС) есть разница между химическими сдвигами ЯМР аналогичных атомов углерода ¹³С в сульфатированном и несульфатированном олигофукозидах. Ранее в лаборатории химии гликоконъюгатов были проанализированы данные по эффектам сульфатирования в ди- и

α-(1→3)-связанная фукоидановая цепь

фукоидановая цепь с чередующимися α-(1→3)- и α-(1→4)-связями

Рисунок 12. Фрагменты несульфатированных фукоидановых цепей с (1-->3)- и чередующимися (1->3)- и (1->4)-связями, смоделированные исходя из данных конформационного анализа тетрафукозидов **3a** и **8a**, соответственно. Обе цепи имеют форму спиралей, однако эти спирали достаточно сильно различаются по геометрическим параметрам (показаны шаги и диаметры спиралей).

трифукозидах. В данной работе показано, что эффекты сульфатирования в тетра- и гексафукозидах качественно совпадают с эффектами, найдеными для ди- и трифукозидов.

2-О-сульфатированные олигофукозиды 16-96. ск-Эффекты сульфатирования на атомах С-2 были равны +7±0.5 м.д. β-Эффекты сульфатирования на атомах С-1 и С-3 были также существенны, однако имели отрицательные величины (до -3.4 м.д.). Значимые үэффекты сульфатирования (~+2,5 м.д.) наблюдались только на С-4 атомах 4-Огликозилированных остатков олигофукозидов 66-96. Такие большие ү-эффекты не характерны для сульфатных групп. Ранее в работах А.С. Шашкова (ИОХ РАН) было показано, что химические сдвиги ¹³С ЯМР атомов углерода вблизи гликозидной связи зависят от конформации последней. Согласно данным конформационного анализа, введение 2-О-сульфатных групп в исследуемые олигофукозиды изменяло характеристики основных конформеров молекул. Последнее обстоятельство, как мы предполагаем, и вызывало появление больших у-эффектов на С-4 атомах 4-О-гликозилированных фукопиранозных остатков.

4-О-сульфатированные олигофукозиды 18-46. α-Эффекты сульфатирования на атомах С-4 были положительны и равны ~11 м.д. для всех фукопиранозных остатков, кроме терминальных на невосстанавливающих концах молекул, где они были на ~2 м.д. меньше. β-Эффекты сульфатирования на атомах С-5 большинства фукопиранозных остатков и на атомах С-3 терминальных остатков на невосстанавливающих концах молекул имели отрицательные величины, как и в случае 2-О-сульфатированных олигофукозидов. Однако βэффекты на атомах С-3, вовлеченных в образование гликозидных связей, в случае 4-Осульфатированных линейных олигофукозидов имели существенные положительные величины. Также существенные эффекты сульфатирования (положительной величины) наблюдались на атомах С-1, вовлеченных в образование гликозидных связей.

Как было показано выше, введение 4-О-сульфатных групп в $(1\rightarrow 3)$ -связанные олигофукозиды приводит к изменению конформаций молекул и сопровождается увеличением доли конформера Б для $(1\rightarrow 3)$ -гликозидных связей (см. раздел 2), что в свою очередь приводит к слабопольному сдвигу сигналов С-1 и С-3, вовлеченных в образование гликозидных связей. Этот эффект подобен обнаруженному нами для сигналов С-4 атомов в 4-О-гликозилированных фукопиранозных остатках олигофукозидов с чередующимися $(1\rightarrow 3)$ - и $(1\rightarrow 4)$ -гликозидными связями, как следствие введения в них 2-О-сульфатных групп.

5. Анализ спектров ¹³С-ЯМР природных фукоиданов с применением данных по синтетическим олигофукозидам.

Как было сказано в разделе 4, химические сдвиги атомов углерода, находящихся вблизи гликозидной связи, зависят от ес конформации. Следовательно, если конформации дисахаридных фрагментов олигофукозидов близки конформациям дисахаридных фрагментов фукоидановых полисахаридов, то и химические сдвиги атомов углерода ¹³С должны быть близки для этих молекул.

Согласно методу аддитивных схем, химический сдвиг δC_i любого атома углерода *i* моносахаридного остатка в полисахаридной или олигосахаридной цепи можно представить в виде уравнения:

$$\delta \mathbf{C}_i = \delta \mathbf{C}_i^0 + \mathbf{A}(k, i) + \mathbf{B}(k', i)$$
⁽²⁾

где δC_i^0 - химический сдвиг ¹³С этого углерода в изолированном моносахаридном остатке; A(k, i) и B(k', i) – эффекты, обусловленные тем, что данный моносахаридный остаток с одной стороны гликозилирован (образование связи k), а с другой стороны сам является гликозилирующим (образование связи k) (Рисунок 13). Уравнение 2 позволяет рассчитать химические сдвиги ¹³С ЯМР фуконданов, исходя из данных по эффектам гликозилирования [A(k, i) и B(k', i)] для синтетических олигофукозидов. Нами проводился расчет химических сдвигов ¹³С ЯМР фукоидановых цепей с (1-3)- и чередующимися (1-3)- и (1-4)-связями, как в несульфатированной, так и в сульфатированной формах. Расчет проводился исходя из ди-, три-, тетра- и гексасахаридных моделей (Таблица 4).

$$k \qquad k' \\ \rightarrow 3)-Fucp-\alpha-(1\rightarrow \underline{4})-Fucp-\alpha-(1\rightarrow 3)-Fucp-\alpha-(1\rightarrow 4)-Fucp-\alpha-(1\rightarrow 4)-Fucp-\alpha-(1\rightarrow$$

Рисунок 13. Фрагмент фукоидановой цепи и обозначение связей к и к :

Для каждой олигосахаридной модели впоследствии был проведен расчет среднеквадратичного отклонения S по уравнению (3). Величины S позволяют судить о степени соответствия экспериментальных и рассчитанных химических сдвигов и позволяют сопоставить олигосахаридные модели между собой.

$$\mathbf{S} = \sqrt{\frac{1}{n} * \left[\sum_{i=1}^{n} \left[\partial C_{i}^{3KOT} - \partial C_{i}^{pacy} \right]^{2} \right]}$$
(3)

где n – число атомов углерода, приходящихся на повторяющееся звено фукоидановой цепи.

Анализ величин среднеквадратичных отклонений (S) показывал, что они уменьшаются при использовании для расчета олигосахаридов с большей длинной цепи (Таблица 4, последняя колонка). Это утверждение правомочно как в случае фукоидановой цепи, построенной через $(1\rightarrow3)$ -связи, так и в случае цепи с чередующимися $(1\rightarrow3)$ - и $(1\rightarrow4)$ -связями. При этом для обоих типов цепей величины S тетра- и гексасахаридных моделей были близки друг другу и находились в пределах допустимого диапазона изменения химических сдвигов полисахарида (0,20 м.д., см. таблицу 4). Это говорит о том, что конформации дисахаридных фрагментов тетрафукозидов и гексафукозидов близки конформациям дисахаридных фрагментов природных полисахаридов. Этот факт доказывает правомочность моделирования дисахаридных фрагментов тетра- и гексафукозидов (см. раздел 3.2.).

Таблица 4. Химические сдвиги ¹³С ЯМР несульфатированных полисахаридных цепей фукоиданов и отклонения от аддитивности^а ($\Delta \delta^{13}$ С), наблюдаемые для олигосахаридных моделей, и соответствующие им среднеквадратичные отклонения (S).

Объект	Фрагмент	C-1	C-2	C-3	C-4	C-5	C-6	S	
······································		химические сдвиги ¹³ С ЯМР (м.д.)							
фукондан из водоросли Chorda filum ³	\rightarrow 3)-Fuc <i>p</i> - α -(1 \rightarrow	96,9	67,7	76,3	69,8	67,8	16,5	0,20 ⁶	
		откло	нения о	т аддит	ивност	и Δδ ¹³ С	(м.д.)	•	
дисахаридная модель 1а	\rightarrow 3)-Fucp- α -(1 \rightarrow	0,5	0,1	0,5	0,5	0,3	0	0,38	
трисахаридная модель 2а (А) ^в	-→3)-Fuc <i>p</i> -α-(1→	0,4	0	0,4	0,2	0,2	-0,2	0,27	
трисахаридная модель 2а (Б) ^в	\rightarrow 3)-Fuc <i>p</i> - α -(1 \rightarrow	-0,2	-0,1	-0,1	-0,1	-0,2	-0,2	0,16	
тетрасахаридная модель За	\rightarrow 3)-Fuc <i>p</i> - α -(1 \rightarrow	0	0,1	0,3	0,1	0	0,1	0,14	
гексасахаридная модель 5а	\rightarrow 3)-Fuc <i>p</i> - α -(1 \rightarrow	0,1	0,1	0,3	0	0	0	0,14	

³ A.O. Chizhov, A. Dell, H.R. Morris, S.M. Haslam, R.A. McDowell, A.S. Shashkov, N.E. Nifantiev, E.A. Khatuntseva, A.I. Usov. A study of fucoidan from the brown seaweed *Chorda filum. // Carbohydr. Res.*, 1999, V. 320, P. 108-119.

Объект	Фрагмент	C-1	C-2	C-3	C-4	C-5	C-6	S		
······································	химические сдвиги ¹³ С ЯМР (м.д.)									
фукондан из	→3)-Fucp-α-(1-→	101,6	68,3	77,2	70,2	67,7	16,4	0.005		
водоросли r ucus evanescens ⁴	\rightarrow 4)-Fucp- α -(1 \rightarrow	97,8	69,2	70,0	81,2	68,8	16,4	. 0,20*		
		отклог	нения о	т аддит	ивност	и ∆δ ¹³ С	Δδ ¹³ С (м.д.)			
лисахарилная	→3)-Fuc <i>p</i> -α-(1→	0	0,7	1,4	0,9	0,2	-0,1	0.60		
модель 1а+6а	\rightarrow 4)-Fucp- α -(1 \rightarrow	1,4	-0,1	-0,4	-0,1	0,5	-0,1	0,69		
трисахаридная модель 7а	-→3)-Fucp-α-(1→	0	0,7	1,2	0,8	0,3	-0,1	0.60		
	\rightarrow 4)-Fuc <i>p</i> - α -(1 \rightarrow	1,2	-0,1	-0,2	-0,1	0,1	-0,1	. 0,59		
тетрасахаридная модель 8а	\rightarrow 3)-Fucp- α -(1 \rightarrow	0	-0,1	0,1	-0,1	0	-0,1	0.14		
	\rightarrow 4)-Fuc <i>p</i> - α -(1 \rightarrow	0	-0,1	-0,3	-0,3	0	-0,1	0,14		
гексасахаридная модель 9а	\rightarrow 3)-Fucp- α -(1 \rightarrow	-0,1	-0,1	0	-0,1	0	-0,1			
	-→4)-Fucp-α-(1-→	0	0	0,3	0	0	-0,1	0,11		

^а Отклонение от аддитивности ($\Delta \delta^{13}C_i$) для *i*-ого атома углерода есть разница между экспериментальным химическим сдвигом этого атома в полисахариде (C_i^{secn}) и химическим сдвигом, рассчитанным по формуле 2 (C_i^{pacs}), исходя из данных по олигофукозидам ($\Delta \delta^{13}C_i = \delta C_i^{\text{secn}} - \delta C_i^{\text{pacs}}$). ⁶Доп устимая величина среднеквадратичного отклонения экспериментальных химических сдвигов ¹³С ЯМР полисахарида, обусловленная зависимостью последних от концентрации и вязкости раствора полисахарида. ⁸ Трисахаридная модель 2a: A – расчет исходя из данных по дисахаридному фрагменту на восстанавливающем конце молекулы. Б – расчет исходя из данных по дисахаридному фрагменту на невосстанавливающем конце молекулы.

Следует также отметить, что в случае полисахаридной цепи фукоидана из водоросли *Fucus evanescens* с чередующимися $(1\rightarrow 3)$ - и $(1\rightarrow 4)$ -связями различие между экспериментальными и рассчитанными химическими сдвигами ¹³С ЯМР на атомах, находящихся в непосредственной близости к $(1\rightarrow 4)$ -гликозидной связи (атомы C-1 – гликозилирующего остатка и атомы C-3, C-4 и C-5 – гликозилируемого остатка, Таблица 4) претерпевают меньшие изменения при удлинении цепи олигосахарида, по-сравнению с аналогичными эффектами на атомах ¹³С при $(1\rightarrow 3)$ -гликозидной связи. Этот факт еще раз свидетельствует об ограниченности конформационной подвижности $(1\rightarrow 4)$ -связанных фрагментов, которые, как мы предполагаем, стабилизированы за счет сольватации (см. раздел 3).

⁴ M.I. Bilan, A.A. Grachev, N.E. Ustuzhanina, A.S. Shashkov, N.E. Nifantiev, A.I. Usov. Structure of a fucoidan from the brown scaweed *Fucus evanescens* C.Ag. // Carbohydr. Res., 2002, V. 337, P. 719-730.

Выводы

1. На основании экспериментальных величин трансгликозидных констант спин-спинового взаимодействия ${}^{3}J_{C,H}$ и данных молекулярно-механических расчетов исследованы конформационные свойства олигофукозидов, построенных только из α -(1 \rightarrow 3)- или чередующихся α -(1 \rightarrow 3)- и α -(1 \rightarrow 4)-связанных дисахаридных звеньев и отвечающих основным структурным фрагментам природных полисахаридов фукоиданов.

2. Показано, что конформации α -(1 \rightarrow 3)-связанных дисахаридных фрагментов в изучаемых олигофукозидах зависят от их положения в олигосахаридной цепи, наличия сульфатных групп и разветвлений, в то время как конформации α -(1 \rightarrow 4)-связанных фрагментов заметно изменяются только при введении в молекулы сульфатных групп.

 Показано, что конформации внутренних дисахаридных фрагментов в исследованных олигосахаридах с числом фукозных звеньев от четырех и выше совпадают с конформациями соответствующих дисахаридных фрагментов фукоиданов.

 Построены вторичные структуры фукоидановых цепей с гомо α-(1→3)- или чередующимися α-(1→3)- и α-(1→4)-связями; выявлены особенности пространственной организации этих двух типов цепей.

5. Для исследуемых олигофукозидов определены экспериментальные эффекты сульфатирования и гликозилирования в спектрах ¹³С ЯМР и изучена их взаимосвязь с конформационными характеристиками молекул.

Основное содержание диссертации изложено в следующих работах:

- A.G. Gerbst, N.E. Ustuzhanina, A.A. Grachev, E.A. Khatuntseva, D.E. Tsvetkov, D.M. Whitfield, A. Berces, N.E. Nifantiev. Synthesis, NMR and conformational studies of fucoidan fragments 3: effect of benzoyl group at O-3 on stereoselectivity of glycosylation by 3-O- and 3,4-di-O-benzoylated 2-O-benzylated fucosyl bromides // J. Carbohydr. Chem., 2001, V. 20, P. 821-831.
- A.G. Gerbst, N.E. Ustuzhanina, A.A. Grachev, N.S. Zlotina, E.A. Khatuntseva, D.E. Tsvetkov, A.S. Shashkov, A.I. Usov, N.E. Nifantiev. Synthesis, NMR and conformational studies of fucoidan fragments 4: 4-mono- and 4,4'-disulfated (1-3)-α-L-fucobioside and 4sulfated fucoside fragments // J. Carbohydr. Chem., 2002, V. 21, P. 313-324.
- A.G. Gerbst, N.E. Ustuzhanina, A.A. Grachev, E.A. Khatuntseva, D.E. Tsvetkov, A.S. Shashkov, A.I. Usov, M.E.Preobrazhenskaya, N.A.Ushakova, N.E. Nifantiev. Synthesis, NMR and conformational studies of fucoidan fragments 5: Linear 4,4',4"-tri-O-sulfated and

parent non-sulfated (1-3)-fucotrioside fragments // J. Carbohydr. Chem., 2003, V. 22, P. 37-50.

- А.Г. Гербст, А.А. Грачев, Н.Е. Устюжанина, Е.А. Хатунцева, Д.Е. Цветков, А.И. Усов, А.С. Шашков, М.Е. Преображенская, Н.А. Ушакова, Н.Э. Нифантьев. Синтез, ЯМР и конформационные исследования фрагментов фукоиданов. VI. Фрагменты, содержащие α-(1→2)-связанное фукобиозидное звено // Биоорган. химия, 2004, Т. 30, С. 156-167.
- A.A. Grachev, A.G. Gerbst, N.E. Ustyuzhanina, E.A. Khatuntseva, A.S. Shashkov, A.I. Usov, N.E. Nifantiev. Synthesis, NMR and conformational studies of fucoidan fragments 7: influence of length and branching on the conformational flexibility of linear (1→3)-linked oligosaccharide chains // J. Carbohydr. Chem., 2005, V. 24, P. 85-99.
- A.A. Grachev, A.G. Gerbst, N.E. Ustyuzhanina, A.S. Shashkov, A.I. Usov, N.E. Nifantiev. NMR investigation of the influence of sulfate groups at C-2 and C-4 on the conformational behaviour of the fucoidan fragments with homo-(1→3)-linked backbone // J. Carbohydr. Chem., 2006, V. 25, P. 315-330.
- A.A. Grachev, A.G. Gerbst, N.E. Ustyuzhanina, A.S. Shashkov, N.E. Nifantiev. The conformational study of oligosaccharides which are related to the fragments of natural fucoidans // Международная конференция "Carbohydrate Workshop" (Борстель, Германия), 2004, Тезисы докладов, С. 22.
- 8. А.А. Грачев, А.Г. Гербст, А.С. Шапков, Н.Э. Нифантьев. Применение трансглико-C-H констант спин-спинового зидных вицинальных взаимолействия в конформационном анализе олигосахаридных фрагментов фукоиданов 11 III Всероссийская школа-конференция "Химия и биохимия углеводов" (Саратов), 2004, Тезисы докладов, С. 28.
- A.A. Grachev, A.G. Gerbst, A.S. Shashkov, N.E. Nifantiev. The conformational study of oligosaccharides related to the fragments of natural fucoidans // Международная конференция "NMR in Condensed Matter" (Санкт-Петербург), 2005, Тезисы докладов, С. 76.

Принято к исполнению 23/08/2006 Исполнено 24/08/2006 Заказ № 563 Тираж: 150 экз.

ООО «11-й ФОРМАТ» ИНН 7726330900 Москва, Варшавское ш., 36 (495) 975-78-56 (495) 747-64-70 www.autoreferat.ru