РЕГІИН ДМИТРИЙ АЛЕКСАНДРОВИЧ

ОПТИМИЗАЦИЯ ВОДНО-ХИМИЧЕСКИХ РЕЖИМОВ СИСТЕМ ОХЛАЖДЕНИЯ КОНДЕНСАТОРОВ ТУРБИН

Специальность 05.14.14 — Тепловые электрические станции, их энергетические системы и агрегаты

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук

Москва - 2009

Работа выполнена в ГОУВПО «Московский энергетический институт (Технический университет)» на кафедре Технологии воды и топлива

Научный руководитель: — доктор технических наук, профессор

Петрова Тамара Ивановна

Официальные оппоненты: - доктор технических наук,

Седлов Анатолий Степанович

- кандидат технических наук

Гусева Ольта Владимировна

Ведущая организация:

ОАО «ВТИ»

Защита состоится « 20» мая 2009 года, в 16 час. 00мин. в на заседании диссертационного совета Д 212.157.07 при Московском энергетическом институте (Техническом университете) по адресу: г. Москва, Красноказарменная ул., д. 14.

С диссертацией можно ознакомиться в библиотеке МЭИ (ТУ).

Отзывы на автореферат в двух экземплярах, заверенные печатью организации, просим направлять по адресу: 111250, Москва, Красноказарменная ул., д. 14, Ученый совет МЭИ (ТУ).

Автореферат разослан «17» апреля 2009 г.

Ученый секретарь

диссертационного совета Д 212.157.07

к.т.н., профессор

Meerry

Лавыгин В.М.

ОБЩАЯ ХАРАКТЕРИСТИКА ДИССЕРТАЦИОННОЙ РАБОТЫ

Актуальность работы. Одним из основных факторов, влияющих на надежность работы ТЭС, являются водно-химические режимы (ВХР) отдельных контуров. Традиционно наибольшее внимание уделяется ВХР паро-водяного тракта ТЭС. Однако, наряду с ним, важное значение имеет организация ВХР системы оборотного охлаждения конденсаторов турбин.

В первую очередь это связано с тем, что от состояния трубок конденсатора напрямую зависит тепловая экономичность турбины - при наличии отложений В трубках ухудшается теплообмен конденсирующимся паром и охлаждающей водой, в результате чего снижается вакуум, И как следствие. уменьшается теплоперенал. срабатываемый на турбине, т.е. снижается экономичность энергоблока. Кроме того, в случае усиления коррозионных процессов возможен преждевременный выход трубок конденсатора из строя, что приводит к простою оборудования и затратам на ремонт конденсатора. В последнее время все большее внимание уделяется экологическому аспекту организации ВХР систем охлаждения, так как штрафы за превышение предельно допустимых концентраций примесей в сбросных водах ТЭС являются значительными.

В настоящее время в нашей стране не существует эффективной программы организации ВХР оборотных систем охлаждения, решающей одновременно три проблемы: предотвращение образования отложений, снижение скорости коррозии конструкционных материалов на основе меди и недопущение биологического обрастания системы охлаждения. Кроме того, влияние качества охлаждающей воды и корректирующих реагентов на коррозию медьсодержащих сплавов в высокоминерализованной воде систем охлаждения конденсаторов турбин также практически не изучено. Одним из перспективных методов решения данной проблемы является использование пленкообразующих аминов (в частности хеламина и октадециламина (ОДА)),

однако информация по данному вопросу практически отсутствует.

Поэтому, существенно важной является задача оптимизации ВХР систем оборотного охлаждения конденсаторов турбин с целью снижения скорости коррозии латуни.

Данная работа выполнена в рамках договоров между МЭИ (ТУ) и ОАО «Мосэнерго».

<u>Цель работы</u> состоит в изучении влияния качества охлаждающей воды и корректирующих реагентов на скорость коррозии латуни с целью оптимизации BXP систем охлаждения конденсаторов турбин.

Задачи исследования:

- 1. Провести анализ качества охлаждающей и добавочной воды на ряде ТЭС с целью оценки протекания коррозионных процессов и образования отложений.
- 2. Изучить влияние качества охлаждающей воды на коррозию медьсодержащих сплавов.
- 3. Изучить влияние фосфонатов и микродобавок пленкообразующих аминов (ПАА) на работу катионитных фильтров.
- 4. Исследовать и оценить влияние некоторых рекомендуемых для обработки охлаждающей воды реагентов на скорость коррозии медьсодержащих сплавов в воде систем оборотного охлаждения ТЭС.
- 5. Изучить влияние сформированной пленки ПАА на поверхности латуни на скорость коррозии и образование отложений в условиях работы ТЭС.
- 6. Разработать метод и схему обработки трубок конденсаторов со стороны охлаждающей воды ПАА для турбины Т-100.

Научная новизна работы:

1. Впервые дана оценка влияния отдельных параметров (концентрации хлоридов, сульфатов и солесодержания охлаждающей воды) на скорость

коррозии латуни в охлаждающей воде.

- 2. Получены математические зависимости, позволяющие прогнозировать скорость коррозии латуни от концентрации в охлаждающей воде только хлоридов и суммарного содержания хлоридов и сульфатов.
- 3. Определена скорость коррозии латуни в охлаждающей воде в присутствии различных корректирующих реагентов.
- 4. Разработана методика и схема проведения обработки конденсаторных трубок реагентом ОДА для теплофикационных турбин.

<u>Практическая ценность работы</u>. Определено влияние различных корректирующих реагентов на скорость коррозии латуни на воде систем охлаждения.

Установлено влияние оксиэтилендифосфоновой кислоты (ОЭДФК) и хеламина 9100 МК на обменную емкость катионита IRA 120 H.

Показано, что предварительная обработка конденсаторных трубок пленкообразующим амином ОДА со стороны охлаждающей воды позволяет снижать скорость образования отложений и коррозии латуни.

Результаты работы могут быть использованы для повышения экономичности и надежности работы энергетического оборудования на ТЭС с оборотными системами охлаждения.

Степень достоверности результатов. Достоверность полученных данных подтверждается результатами экспериментальных и промышленных исследований, проведенных с использованием современных средств контроля и обработки результатов. Основные научные положения, изложенные в работе, согласуются с литературными данными.

<u>Апробация работы.</u> Основные результаты были представлены на трех международных научно-технических конференциях студентов и аспирантов «Радиоэлектроника, электротехника и энергетика» (МЭИ, Москва, март 2007, 2008, 2009 гг.), на двух водно-химических форумах (МЭИ, Москва, апрель

2008, 2009 гг.) и на заседании кафедры Технологии воды и топлива (МЭИ, Москва, март 2009 г.).

<u>Пичный вклад автора:</u> разработка методики проведения экспериментов; проведение экспериментов; анализ экспериментальных данных; разработка методики и схемы обработки конденсаторных трубок со стороны охлаждающей воды с целью снижения скорости коррозии и образования отложений для турбины Т-100.

<u>Публикации по работе.</u> По теме диссертации имеется пять публикаций. <u>Структура и объем диссертации.</u> Работа состоит из введения, пяти глав, выводов и списка литературы. Основной материал изложен на 121 странице машинописного текста, включает 64 рисунка и 25 таблиц. Список литературы включает 106 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность рассматриваемой проблемы.

<u>В первой главе</u> приведен обзор литературных данных по типам систем охлаждения конденсаторов на ТЭС и основным проблемам их эксплуатации.

Показано, что прямоточная система охлаждения требует наличия мощного источника охлаждающей воды и приводит к тепловому загрязнению источника водоснабжения. Организация ВХР прямоточной системы охлаждения не вызывает значительных проблем.

В нашей стране наиболее распространены оборотные системы охлаждения с градирнями (рис.1).

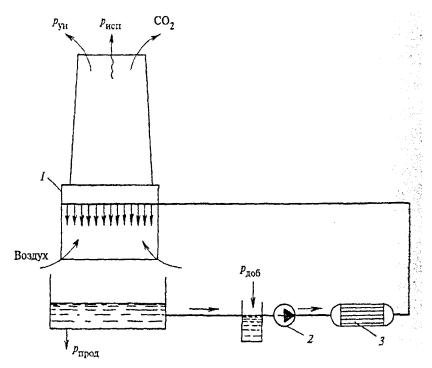


Рис.1. Схема оборотной системы охлаждения с градирнями.

1- градирня; 2- циркуляционный насос; 3 – конденсатор.

Основные требования к охлаждающей воде в системах оборотного охлаждения сводятся к тому, чтобы она имела необходимую для охлаждения потребителя температуру, не вызывала при нагреве образования отложений и биообрастаний теплопередающих поверхностей и трубопроводов и не приводила к коррозии оборудования и трубопроводов.

В системах оборотного охлаждения в результате многократного повторного использования охлаждающей воды происходит увеличение общего солесодержания и жесткости воды, что существенно влияет, с одной стороны, на интенсивность протекания коррозионных процессов, а с другойна скорость образования отложений на трубных поверхностях конденсаторов.

Отложения минеральных примесей, как в градирнях, так и на поверхности трубок конденсаторов турбин снижают эффективность теплопередачи, и как следствие, КПД энергоблока. Кроме того, отложения увеличивают гидравлическое сопротивление тракта, что повышает расход электроэнергии при эксплуатации системы. Для предотвращения образования минеральных отложений в конденсаторах турбин применяют:

- продувку системы;
- физическую обработку воды в магнитном или акустическом поле;
- стабилизационную обработку воды с помощью химических реагентов.

Следует отметить, что использование продувки для снижения накипеобразования лимитировано возможностями источника исходной воды и экономическими составляющими (платой за исходную воду и сброс продувочной воды).

Физическая обработка воды в магнитном поле не показала стабильных результатов, поэтому его применение ограничено фактором надежности работы.

Выяснено, что стабилизационная обработка воды используемыми в

нашей стране реагентами - кислотой и фосфонатами позволяет снизить скорость роста отложений.

Однако из зарубежных публикаций следует, что наиболее эффективными методами ведения ВХР системы охлаждения являются использование комплексных программ ингибирования и пленкообразующих аминов. Одной из наиболее известных комплексных программ в нашей стране является программа компании GE Water: наиболее распространенными ПАА – хеламин и ОДА, Однако данные по влиянию всех перечисленных реагентов на скорость коррозии латуни отсутствуют.

Таким образом, на основании проведенного обзора литературных данных сформулирована задача о необходимости изучения влияния качества охлаждающей воды и различных корректирующих реагентов на скорость коррозии латуни.

Во второй главе проведен анализ качества добавочной и охлаждающей воды на ТЭЦ-8, ТЭЦ-25 и ТЭЦ-26 ОАО "Мосэнерго", из которого следует, что качество воды в этих системах значительно отличается, и изменяется в течение сезона. Было установлено, что в данных системах охлаждения имеет место образование отложений солей жесткости и коррозия медьсодержащих сплавов. Кроме того, из расчета коэффициентов упаривания по щелочности, жесткости и хлоридам выявлено, что даже после внедрения ВХР с дозированием ОЭДФК в системе охлаждения ТЭЦ-8 ОАО "Мосэнерго" происходит интенсивное выпадение солей жесткости на теплопередающих поверхностях.

<u>В третьей главе</u> приведены результаты экспериментов, по влиянию используемого в настоящей момент на ТЭЦ-8 ОАО "Мосэнерго" корректирующего реагента — ОЭДФК, а также перспективного реагента — хеламина 9100 МК на работу катионита IRA 120 H.

Следует отметить, что на ТЭЦ-8 ОАО "Мосэнерго" вода системы охлаждения используется в качестве исходной воды для водоподготовительной установки подпитки теплосети. Поэтому, при

обработке охлаждающей воды различными реагентами необходимо учитывать их влияние на работу катионитных фильтров, которые используются в схеме подготовки воды.

Результаты экспериментов по изучению влияния ОЭДФК и хеламина 9100 МК на работу катионита IRA 120 Н приведены в табл. 1 и 2.

Было установлено (табл. 1), что в результате дозирования в обрабатываемую воду ОЭДФК в концентрации 1 мг/дм³ обменная емкость катионита снижалась примерно на 11 %. Проведенный расчет показал, что в случае использования ОЭДФК расход воды на собственные нужды катионитных фильтров увеличивается на 13,8 %.

Таблица 1. Влияние ОЭДФК на удельное количество обработанной воды и обменную емкость катионита IRA 120H в зависимости от фильтроцикла.

Фильтроцикл	Удельное количести ионитом воды за мл/см	фильтроцикл,	Обменная емкость до проскока, г-экв/м ³		Снижение, %
	Без ОЭДФК	С ОЭДФК	Без ОЭДФК	С ОЭДФК	
<i>N</i> ₂ 1	805	716	2011	1790	11
№ 2	267	233	666	583	12
N₂ 3	264	258	659	645	2
№ 4	232	240	580	599	-3
№ 5	311	207	778	519	33
Среднее значение	376	331	939	827	11

Таблица 2. Влияние хеламина 9100 МК на удельное количество обработанной воды и обменную емкость катионита IRA 120H в зависимости от фильтроцикла.

Фильтроцикл	ионитом воды з	ство пропушенной за фильтроцикл, 'см ³	Обменная емкость до проскока, г-экв/м ³		Снижение, 9	
	Без хеламина	С хеламином	Без хеламина	хеламина С хеламином	1	
№ 1	805	798	2011	1994	0	
№ 2	267	275	666	688	-3	
№ 3	264	245	659	612	7	

№ 4	232	262	580	655	-11,5
Среднее значение	376	395	939	987	-1,5

Дозирование в обрабатываемую воду хеламина марки 9100 МК в концентрации 3 мг/дм 3 практически не влияло на обменную емкость катионита IRA 120 H (табл. 2).

В <u>четвертой главе</u> приведены результаты опытов по изучению влияния качества охлаждающей воды и дозирования таких корректирующих реагентов как ОЭДФК, хеламин 9100 МК, ОДА, и реагентов компании GE на скорость коррозии латуни Л 68 в охлаждающей воде.

Из данных, приведенных в главе 2 следует, что состав охлаждающей воды различается значительно и может сильно влиять на протекание коррозионных процессов в тракте системы охлаждения. Поэтому были проведены опыты по изучению скорости коррозии латуни на водах, качество которых характерно для систем оборотного охлаждения в системе ОАО "Мосэнерго", а также на воде, качество которой характерно для добавочной воды этой энергосистемы. В таблице 3. приведены данные о составе вод, которые использовались для проведения опытов. Из этих данных следует, что использованные в опытах воды значительно различаются, в первую очередь, по содержанию в них хлоридов и сульфатов, т.е. по наличию коррозионно-активных примесей.

 Таблица 3.

 Химический состав вод, на которых проводились опыты.

Наименование	pН,	Сухой	Хлориды,	Сульфаты,	Ж, мг-	Щ, мг-экв/дм ³
показателя	Ед.	остаток,	мг/л	мг/л	экв/дм ³	ļ
		мг/л				
Вода 1	8,40	321	29,7	26,4	-	-
Вода 2	8,32	471	98,1	50,0	•	-
Вода 3	8,45	-	71,8	44,4	5,68	4,0
Вода 4	7,70	193	20,0	27,7	3,63	2,6
Вода 5	8,89	323	54,2	46,9	5,60	3,9

Таблица 4 Результаты экспериментов по определению скорости коррозии латуни Л 68 на водах оборотных систем охлаждения.

№ испытуемой воды	Время испытаний, ч	Скорость коррозии, мг/м²*ч	Ошибка определения, %
Вода 1 (Cci = 29,7 мг/дм ³ ;		3,40	8
$C_{SO4}^{2} = 26,4 \text{ мг/дм}^3, \text{ pH} =$	700	3,12	7
8,4)	790	3,21	4
среднее значение	1	3.24	3
Вода 2 ($C_{Cl} = 98,1 \text{ мг/дм}^3$;		16,18	1
$C_{SO4}^{2} = 50,0 \text{ мг/дм}^3, pH =$	1121	16,81	4
8,32)	1121	15,54	5
среднее значение		16,18	3
Вода 3 ($C_{Cl} = 71.8 \text{ мг/дм}^3$;	584	3,28	11
$C_{SO4}^{2-} = 44,4 \text{ мг/дм}^3, \text{ pH} =$		4,35	9
8,45)		3,83	3
среднее значение]	3,82	4
Вода 4 ($C_{Cl} = 20,0 \text{ мг/дм}^3$;		0,67	8
$C_{SO4}^{2} = 27.7 \text{ MF/дM}^3, \text{ pH} =$	505	0,74	15
7,7)	525	0,60	13
среднее значение		0,67	11
Вода 5 ($C_{Cl} = 54,2 \text{ мг/дм}^3$;		0,74	7
$C_{SO4}^{2} = 46.9 \text{ MF/дM}^3, \text{ pH} =$	1460	0,92	14
8,89)		0,54	14
среднее значение		0,73	9

Из экспериментальных данных следует (табл. 4), что воды систем охлаждения обладают повышенной коррозионной активностью по отношению к латуни Л 68. Было установлено, что скорость коррозии латуни в охлаждающей воде в основном зависит от концентрации хлоридов (рис. 2.). В результате обработки экспериментальных данных в программе Mathcad 13, было выведено уравнение, показывающее зависимость скорости коррозии латуни от концентрации хлоридов в охлаждающей воде:

$$\theta_{\kappa op} = 7,64 \cdot 10^{-3} \cdot e^{0,077 \cdot C_{Cl^-}} + 1,47, \text{MF/M}^2 \cdot v$$

Опыты по изучению влияния дозирования ОЭДФК, хеламина 9100 МК, ОДА и комплексной программы обработки охлаждающей воды реагентами компании GE Water на скорость коррозии латуни показали следующее.

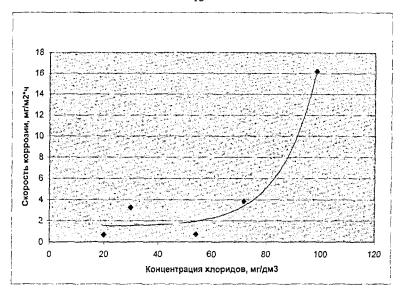


Рис. 2. Изменение скорости коррозии латуни Л-68 в зависимости от содержания хлоридов в охлаждающей воде (pH =7,7-8,9).

Наличие ОЭДФК в охлаждающей воде в исследованном диапазоне концентраций (до $10~{\rm Mr/дm^3}$) приводило к повышению скорости коррозии латуни (рис. 3.).

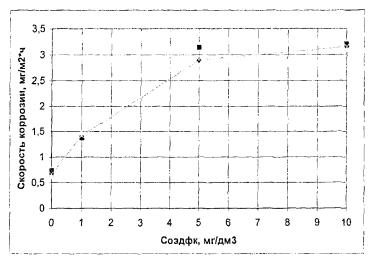


Рис. 3. Влияние концентрации ОЭДФК на скорость коррозии латуни в воде № 4.

Опыты по влиянию хеламина 9100 МК на скорость коррозии латуни показали, что дозирование данного реагента в воду систем охлаждения приводит к увеличению скорости коррозии латуни Л 68 во всем диапазоне исследованных концентраций т.е. до 10 мг/дм³ (табл. 5.).

Таблица 5. Влияние концентрации хеламина на скорость коррозии латуни Л-68 в воде № 1, 2, 4.

Схел, мг/дм3	№ образца	Скор	Скорость коррозни, мг/м ² *ч		
		Вода № 1	Вода № 2	Вода № 4	
	1	3,40	16,18	0,67	
0	2	3,12	16,81	0,74	
l 0	3	3,21	15,54	0,60	
-	Средние значение	3,24	16,18	0,67	
	1	3,77	16,31	5,09	
	2	4,03	16,82	5,18	
1	3	3,34	16,18	5,15	
	Средние значение	3,71	16,44	5,14	
	1	5,22	22,00	4,71	
5	2	5,09	20,99	4,71	
	3	5,03	23,01	5,10	
	Средние значение	5,11	22,00	4,84	
10	1	5,31	25,34	7,42	
	2	5,44	23,52	7,23	
10	3	6,01	27,15	7,17	
L	Средние значение	5,59	25,34	7,27	

Данные по влиянию дозирования ОДА показывали, что дозирование данного реагента в охлаждающую воду при температуре ≈ 25 °C во всем диапазоне исследованных концентраций (до 20 мг/дм³) не влияло на скорость коррозии латуни Л 68 (рис. 4).

Результаты испытаний по влиянию комплексной программы обработки охлаждающей воды реагентами GE Water (Inhibitor AZ 8101 в концентрации 15 мг/дм³ и реагент Depositrol BL 5313 в концентрациях от 0 до 15 мг/дм³) показывают, что данная обработка не позволяет снизить скорость коррозии латуни Л-68 в охлаждающей воде (рис. 5).

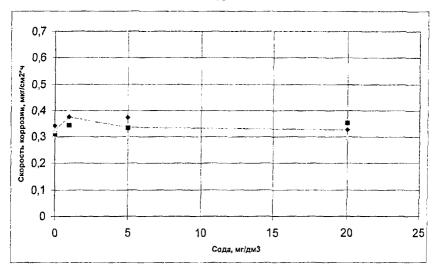


Рис. 4. Зависимость скорости коррозии латуни Л68 от концентрации ОДА в воде № 1.

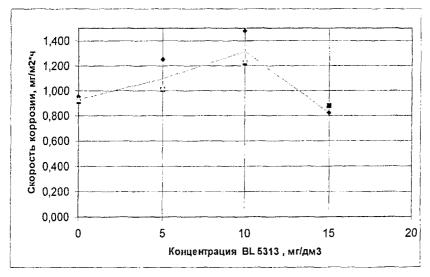


Рис. 5. Изменение скорости коррозии латуни Л 68 при различных концентрациях реагента Depositrol BL 5313 в воде № 5 в присутствии реагента AZ 8101 в концентрации 15 мг/дм³.

Таким образом, результаты экспериментов показали, что ни один из рекомендуемых производителями реагентов, изученных в данной работе, не

позволяет снизить скорость коррозии латуни Л-68 в охлаждающей воде различных систем охлаждения ОАО "Мосэнерго".

В <u>пятой главе</u> рассмотрены результаты опытов по обработке поверхности конденсаторов турбин ПАА ОДА со стороны охлаждающей воды на скорость коррозии латуни и образования отложений на поверхности латунных трубок.

Данный способ имеет ряд преимуществ по сравнению с ингибированием охлаждающей воды, а именно:

- 1. Нет необходимости в постоянном дозировании в тракт дорогостоящих химических реагентов;
- 2. Продувочные воды системы охлаждения не содержат ингибиторов, ПДК на которые, как правило, невелики.
 - 3. Поверхность защищена не только во время работы оборудования, но и во время простоев.

Результаты опытно-промышленных испытаний данного метода на ТЭЦ-8 и ТЭЦ-22 ОАО "Мосэнерго" показали, что обработка поверхности конденсаторов турбин ОДА позволяет существенно снизить как скорость коррозии латуни, так и скорость образования отложений на поверхности латунных трубок (табл. 6).

Скорость образования отложений и коррозии латуни Л 68 в воде

Таблица 6.

ТЭЦ-22 В-ЦСТ Показатель Образцы без Образцы без Образцы, обработанные Образцы, обработанные обработки обработки ОДА ОДА Скорость образования 0,59 56.0 28.0 1.93 отложений, мг/м²*ч Скорость коррозии, мг/м2*ч 4.38 1.46 0.86 0,62

систем охлаждения ТЭЦ-8 и ТЭЦ-22.

В рамках договора с ТЭЦ-22 ОАО "Мосэнерго" была разработана схема

и методика проведения обработки конденсатора турбины Т-100 со стороны охлаждающей воды, приведенная на рис. 6.

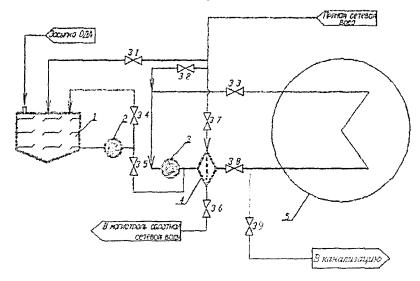


Рис. 6. Схема обработки конденсаторных трубок турбины T-100 водной эмульсией ОДА.

1 – бак водной эмульсии ОДА, 2 – насос рециркуляции и дозирования раствора реагента, 3 – циркуляуционный насос, 4 – теплообменник, 5 – конденсатор.

Расчет экономической эффективности данного способа показал, что капитальные затраты на его проведение составляют 4.175.000 руб, годовая экономия – 5.094.000 руб, а период окупаемости – менее 10 месяцев.

выводы

- Анализ литературных данных показал, что в настоящее время на ТЭС с оборотными системами охлаждения отсутствуют эффективные методы предотвращения коррозии медьсодержащих материалов.
- Проведен анализ качества охлаждающей воды конденсаторов на ряде ТЭС показавший, что в системах охлаждения конденсаторов

- турбин протекают коррозионные процессы конструкционных материалов на основе меди.
- 3. Изучено влияние ОЭДФК и пленкообразующего амина хеламин 9100 МК на обменную емкость катионита IRA 120H в Nа-форме: наличие ОЭДФК в обрабатываемой воде в концентрации 1 мг/дм³ снижает обменную емкость катионита IRA 120H (примерно на 11%), а пленкообразующий амин хеламин 9100 МК в концентрации 3 мг/дм³ практически на нее не влияет.
- 4. Установлено, что охлаждающие воды, на которых проводились эксперименты, обладают высокой коррозионной активностью по отношению к латуни Л-68, при этом определяющим факторам, влияющим на скорость коррозии латуни Л 68, является концентрация хлоридов. Выведена математическая зависимость, позволяющая прогнозировать скорость коррозии латуни в охлаждающей воде в зависимости от концентрации хлоридов.
- 5. Установлено, что дозирование в охлаждающую воду ОЭДФК, хеламина 9100 МК, октадециламина и реагента AZ 8101 не позволяет эффективно снизить скорость коррозии латуни Л-68.
- 6. Показано, что предварительная обработка поверхности конденсаторных трубок водной эмульсией ОДА является эффективным способом снижения скорости коррозии латуни Л-68 и образования отложений на ее поверхности.
- Разработана методика и схема обработки конденсаторных трубок со стороны охлаждающей воды конденсаторов с турбинами Т-100.
- Рассчитано, что срок окупаемости метода защиты поверхности конденсатора турбины Т-100 с помощью нанесения пленки ОДА на поверхность конденсаторных трубок составляет менее 10 месяцев.

Основное содержание диссертации отражено в следующих публикациях:

- 1. Петрова Т.И., Репин Д.А., Факторы, влияющие на работу оборотных систем охлаждения тепловых станций.// Вестник МЭИ. 2009 № 1, с. 106-111
- 2. Петрова Т.И., Репин Д.А., Влияние пленкообразующих аминов на скорость коррозни латуни в охлаждающей воде конденсаторов турбин. // Новое в российской электроэнергетике, 2008, №5., с. 49-54
- 3. Репин Д.А., Петрова Т.И. Способы коррекции ВХР оборотной системы охлаждения конденсаторов турбин // Тринадцатая междунар. научн.-техн. конф. студентов и аспирантов "Радиоэлектроника, электротехника и энергетика": Тез. докл. М.,2007. Т.3. С. 141-142.
- 4. Репин Д.А., Петрова Т.И. Влияние хеламина на скорость коррозии латуни в оборотных системах охлаждения. // Четырнадцатая междунар. научн.-техн. конф. студентов и аспирантов "Радиоэлектроника, электротехника и энергетика": Тез. докл. М.,2008. Т.3. С. 136-137.
- 5. Репин Д.А., Петрова Т.И. Влияние ОЭДФК и хеламина на работу катионитных фильтров // Пятнадцатая междунар. научн.-техн. конф. студентов и аспирантов "Радиоэлектроника, электротехника и энергетика": Тез. докл. М., 2009. Т.З. С. 172-173.

Подписано в печать 9.04.09 $_{3ak}$. 84 Тир. 100 П.л. 1.25 Полиграфический центр МЭИ(ТУ) Красноказарменная ул.,д.13