УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н. Д. ЗЕЛИНСКОГО РАН

На правах рукописи

Рынин Станислав Сергеевич

КВАНТОВО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ МЕХАНИЗМОВ РЕАКЦИЙ АНАЛОГОВ КАРБЕНОВ С ПОЛИНЕПРЕДЕЛЬНЫМИ СОПРЯЖЕННЫМИ ОРГАНИЧЕСКИМИ СОЕДИНЕНИЯМИ

02.00.03 – Органическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Москва – 2010

Работа выполнена в Лаборатории аналогов карбенов и родственных интермедиатов № 1 Учреждения Российской академии наук Института органической химии им. Н. Д. Зелинского РАН (ИОХ РАН).

Научные руководители:

кандидат химических наук Боганов Сергей Евгеньевич

кандидат химических наук Фаустов Валерий Иванович

Официальные оппоненты:

член-корреспондент РАН Анаников Валентин Павлович (ИОХ им. Н. Д. Зелинского РАН)

доктор химических наук, профессор Мельников Михаил Яковлевич (МГУ им. М. В. Ломоносова)

Ведущая организация:

Учреждение Российской академии наук Институт химической физики им. Н. Н. Семенова РАН

Защита диссертации состоится «9» ноября 2010 г. в 15⁰⁰ на заседании Диссертационного совета Д 002.222.01 при Учреждении Российской академии наук Институте органической химии им. Н. Д. Зелинского РАН по адресу: 199991, Москва, Ленинский пр-т, 47.

С диссертацией можно ознакомиться в библиотеке ИОХ РАН.

Автореферат диссертации разослан «<u>6</u>» октября 2010 г.

Ученый секретарь Диссертационного совета Д 002.222.01 доктор химических наук

Оворния Родиновская Л. А.

Актуальность темы. Химия аналогов карбенов – силиленов SiR₂, гермиленов GeR₂ и станниленов SnR₂ – является интенсивно развивающейся областью химии, что связано с важной ролью этих интермедиатов в превращениях органических и неорганических производных кремния, германия и олова, а также с необычностью строения и реакционной способности этих частиц. В последнее время проведено подробное рассмотрение механизмов реакций внедрения аналогов карбенов в одинарные связи элемент-элемент, а также взаимодействия этих высокореакционных частиц с алкенами и алкинами. При этом экспериментальные и теоретические методы исследования аналогов карбенов успешно дополняли друг друга. Реакции аналогов карбенов с простейшими полинепредельными сопряженными соединениями – 1,3-диенами - экспериментально исследуются уже давно, имеют общий характер и широко доказательства промежуточного образования используются ДЛЯ этих интермедиатов. Вместе с тем, вплоть до самого последнего времени, эти реакции почти не изучались методами квантовой химии. Настоящая работа направлена на восполнение этого и некоторых других пробелов.

Цель работы. Целью данной работы является детальное изучение квантово-химическими методами механизмов взаимодействия аналогов карбенов с сопряженными органическими соединениями, включающее каналов превращений наиболее энергетически выгодных выявление связанных с ними стереохимических особенностей протекания реакций, оценку термодинамических и кинетических параметров для основных направлений реакций, установление природы интермедиатов, участвующих в превращениях, оценку влияния природы центрального атома и заместителей в аналогах карбенов на ход реакций.

Методология исследования. Для решения поставленных задач было (ППЭ) проведено исследование поверхностей потенциальной энергии набора систем аналог карбена – сопряженная молекула с широкого использованием методов функционала плотности РВЕ и ВЗLYP. Для получения более точных энергетических параметров изучаемых реакций были применены современные "композитные" методы. позволяющие приблизиться к термохимической (~ 1 ккал/моль) точности вместе co снижением ресурсозатратности самих расчетов. В данной работе были использованы варианты двух наиболее популярных "композитных" схем: Gn (метод G3(MP2)B3) и CBS (метод CBS-QB3).

Научная новизна и практическая ценность работы. В рамках данной работы проведено первое систематическое исследование ППЭ систем аналог карбена – бута-1,3-диен, большинство из которых до этого ни разу не рассматривалось теоретически. Показана роль, которую в этих системах могут

(2+1)-, (4+1)-циклоприсоединения и [1,3]-сигматропной реакции играть перегруппировки; описаны стереохимические особенности этих процессов. Впервые для реакций циклоприсоединения аналогов карбенов оценено влияние релятивистских эффектов в рамках скалярно-релятивистского формализма. Впервые проведено теоретическое изучение возможности протекания реакции (6+1)-циклоприсоединения для аналогов карбенов. Показано, что данное превращение может легко протекать между Z-изомером гекса-1,3,5-триена и ECl₂ (E = Si, Ge), являясь антараповерхностным процессом. В результате первого подробного теоретического рассмотрения систем ER_2 – бензол (E = Si, Ge; R = H, Me, Cl) показано, что реакция внедрения по связи C-H, приводящая к термодинамически наиболее выгодным продуктам, оказывается кинетически затруднена. В тоже время для двух систем, $SiR_2 - C_6H_6$ (R = H, Me), найдена образования возможность относительно легкого соответствующих силациклогепта-2,4,6-триенов в результате каскадного процесса. Проведенные квантово-химические расчеты позволили объяснить значительную часть имеющегося на сегодняшний день экспериментального материала и могут быть использованы как для дальнейшего теоретического анализа, так и для оценки тепловых эффектов и активационных параметров реакций в родственных системах.

Результаты диссертационной Апробация работы. работы были представлены на XVIII Менделеевском съезде по общей и прикладной химии (Москва, 2007 г.), XIX Симпозиуме «Современная химическая физика» (Туапсе, 2007 г.), III Всероссийской конференции-школе «Высокореакционные интермедиаты химических реакций» (Московская область, 2008 г.), Всероссийской конференции «Итоги И перспективы химии элементоорганических соединений» (Москва, 2009 г.), Всероссийской конференции по органической химии (Москва, 2009 г.).

Публикации. Основное содержание диссертационной работы изложено в 3 научных статьях и 5 тезисах докладов.

Структура и объем диссертации. Диссертация состоит из введения, литературного обзора (глава 1), методической части (глава 2), обсуждения результатов (главы 3 – 5), выводов, списка цитируемой литературы и приложений. Во введении обоснована актуальность диссертационной работы, сформулирована цель и методология проведения исследования. В первой главе содержится обзор литературы по реакциям аналогов карбенов с 1,3-диенами, полиенами и аренами. Во второй главе рассмотрены методические аспекты работы. Главы с третьей по пятую посвящены последовательному описанию результатов квантово-химического исследования ППЭ систем аналог карбенов – бута-1,3-диен, гекса-1,3,5-триен и бензол. Материал диссертации изложен на

2<u>40</u> страницах машинописного текста и включает 62 таблицы, 66 схем и 32 рисунка. Библиография насчитывает 182 наименований.

Исследование механизмов реакций аналогов карбенов с бута-1,3-диеном

При исследовании ППЭ систем аналог карбена – бута-1,3-диен (1) основное внимание уделялось реакциям (2+1)- и (4+1)-циклоприсоединения и [1,3]-сигматропной перегруппировки. В случае силиленов были рассмотрены реакции SiH₂, SiMe₂, SiHF, SiHCl, SiF₂, SiCl₂ и прототипа ряда стабильных силиленов – 2-силаимидазол-2-илидена, SiN₂H₂C₂H₂.

Для простейшего силилена, SiH₂, первая стадия взаимодействия с 1 представляет собой безактивационное образование 2-винилсилирана 2 (рис. 1, 2), приводящее к существенному снижению энергии системы. Тщательный поиск переходных состояний, которые могли бы связывать 2 с более стабильным силациклопент-3-еном 3, выявил переходные состояния TS1 – TS7. TS1 и TS2 отвечают разрешенным по правилам Вудворда-Хофмана si-, a TS3 и TS4 – *ar*-[1,3]-сигматропным сдвигам и связывают напрямую 2 с 3. Индексы "s" и "а" указывают, соответственно, на супра- и антараповерхностное протекание реакции, а индексы "i" и "r" – на инверсию и сохранение конфигурации мигрирующей группы. TS5 связывает 3 с высоколежащим по энергии интермедиатом 6, способным через TS6 или TS7 изомеризоваться в 2 (путь из 6 через TS5 в 3 можно связать с процессом (4+1)-циклоприсоединения). В каждой паре переходных состояний TS1 – TS2, TS3 – TS4 первое оказывается по структуре ближе к гипотетическому π-комплексу между реагентами, а второе – к 2-винилсилирану 2, при этом первому переходному состоянию в каждой паре отвечают меньшие энергии активации. Переходные состояния с подобными структурами были найдены и для других систем аналог карбенов – 1 (рис. 1), что служит существенным объединяющим их в механистическом плане фактором. Для [1,3]-сигматропной перегруппировки незамещенного 2 в 3 наиболее выгодным является супраповерхностный канал, отвечающий TS1 (E_a = 95 кДж/моль, CBS-QB3); антараповерхностные каналы и пути, включающие гомолитический разрыв связей Si-C или C-C силиранового цикла (с образованием триплетных бирадикалов 4 или 5, соответственно), являются существенно менее выгодными.

ППЭ системы SiMe₂ – 1 весьма сходна с ППЭ системы SiH₂ – 1. Однако, при переходе от SiH₂ к SiMe₂ происходит значительная стабилизация 2 как в отношении ретрораспада, так и в отношении перегруппировки в 3 через TS1 (табл. 1), энергия активации которой увеличивается до 124 кДж/моль (CBS-QB3).

SiH₂ / GeH₂ / SnH₂

Рисунок 1. Структуры, отвечающие стационарным точкам на ППЭ систем $EH_2 - C_4H_6$ (E = Si, Ge, Sn)

Важным отличием ППЭ систем SiHHal – 1 (Hal = F, Cl) от систем SiR₂ – 1 (R = H, Me) является образование в качестве первичных продуктов безбарьерного взаимодействия π -комплексов 7 и 8 ($\Delta G_{298} \leq 0$), способных легко изомеризоваться в более стабильные 2 через переходные состояния **TS8** и **TS9** (рис. 3).

6

Рисунок 2. Энергетическая диаграмма системы SiH₂ – C₄H₆ согласно расчетам методом PBE/TZ2P

Рисунок 3. Реакции (2+1)-циклоприсоединения в системах аналог карбена – бута-1,3-диен. Индексы "с" и "t" отвечают, соответственно, s-цис- и s-транс-конфигурации бутадиенового фрагмента

Таблица 1. Относительные энергии (ΔЕ₀, кДж/моль) и свободные энергии Гиббса (ΔG[°]₂₉₈, кДж/моль) структур, отвечающих стационарным точкам на ППЭ систем SiR $_2$ – C $_4$ H $_6$ (1)

		Si	H_2		Sil	Me ₂	Sil	2	Si	Cl ₂	SiN_2F	$H_2C_2H_2$
Структура	PBE/	/TZ2P	CBS	-QB3	CBS	-QB3	CBS-	QB3	CBS	-QB3	CBS	-QB3
	$\Delta \mathrm{E}_0$	$\Delta \mathrm{G}^{\circ}_{298}$	$\Delta \mathrm{E}_0$	ΔG°_{298}	$\Delta \mathrm{E}_0$	$\Delta \mathrm{G}^{\circ}_{298}$	$\Delta \mathrm{E}_0$	$\Delta \mathrm{G}^{\circ}_{298}$	ΔE_0	$\Delta \mathrm{G}^{\circ}_{298}$	$\Delta \mathrm{E}_0$	$\Delta \mathrm{G}^{\circ}_{-298}$
$1-t + SiR_2$	0	0	0	0	0	0	0	0	0	0	0	0
7-c	ı	ı	ı	ı	ı	•	-5	28	-16	24	ı	
TS8-c	ı	ı	T	ı	ı	•	99	114	6	57	93	139
7-t	ı	I	ı	ı	ı	ı	-16	18	-27	12	ı	
TS8-t	ı	ı	ı	ı	ı	•	69	116	7	56	114	157
8-c	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı
TS9-c	ı	ı	ı	ı	ı	•	84	131	25	73	133	179
8-t	ı	ı	ı	I	ı	•	I	I	ı	I	I	
TS9-t	ı	ı	I	ı	ı	•	89	136	29	77	138	185
2-с	-168	-123	-168	-126	-177	-127	-57	-10	-81	-33	0	46
2-t	-168	-123	-167	-125	-174	-125	-57	-10	-81	-33	6	50
2-g	-159	-114	-162	-121	-168	-120	-55	-8	-76	-29	7	51
3	-294	-247	-305	-260	-314	-262	-240	-190	-249	-198	-153	-106
4	-49	<i>L</i> -	-31	4	-31	11	63	103	35	76	106	146
5	-27	11	-27	9	-35	9	38	78	31	72	130	170
TS1	-86	-38	-73	-28	-53	-1	15	62	-6	42	48	94
TS2	-79	-31	ı	ı	ı	ı	25	92	13	64	51	100
TS3	-30	17	6-	34	11	61	153	202	105	155	•	•
TS4	-28	20	-6	38	-7	45	79	129	65	117	132	181
TS5	-47	-1	-22	21	ı	•	I	•	•	ı	ı	•
6	-48	-5	-13	25	I	•	I	I	1	I	I	
TS6	-36	6	ı	I	I	•	I	I	1	I	I	
TS7	-24	14	-10	27	I	•	I	I	ı	I	I	

Найдено, что переходные состояния типа TS1 в случае SiHHal отвечают реакции супраповерхностного (4+1)-циклоприсоединения и связывают *π*комплексы 7 с 1-галогенсилациклопент-3-енами 3. При этом обнаруживается активационного барьера от сильная зависимость ориентации SiHHal: существенно более легкое протекание реакции через TS1-T по сравнению с **TS1-С** (рис. 4). Таким образом, для обоих SiHHal π -комплексы могут весьма легко вступать в реакции как (2+1)-, так и (4+1)-циклоприсоединения. Реакции (4+1)-циклоприсоединения силиленов (а также гермиленов и станниленов) характеризуются асимметричным связыванием атома кремния с концевыми атомами С(1) и С(4) (рис. 1). Образующиеся в результате реакции (2+1)циклоприсоединенения 1-галоген-2-винилсилираны 2 в зависимости от своего строения могут превращаться в 3 путем распада на π-комплексы с последующим (4+1)-циклоприсоединением или путем [1,3]-сигматропной перегруппировки si- или sr-типа через TS2-T или TS2-C, соответственно (рис. 4). Причем в последнем случае переходные состояния разрешенных по правилам Вудворда-Хофмана процессов si-типа лежат лишь на 15 – 25 кДж/моль ниже по энергии, чем переходные состояния запрещенных процессов sr-типа.

Рисунок 4. Энергетическая диаграмма систем SiHF – C₄H₆ (сплошные линии) и SiHCl – C₄H₆ (пунктирные линии) согласно расчетам методом G3(MP2)B3

В случае SiHal₂ образование на первой стадии π -комплексов 7 (рис. 3) не приводит к понижению свободной энергии системы ($\Delta G_{298}^{\circ} > 0$), а их дальнейшая изомеризация путем (2+1)-циклоприсоединения через **TS8** или **TS9**

в 2 оказывается кинетически затруднена по сравнению с изомеризацией в 3 путем (4+1)-циклоприсоединения через **TS1** (табл. 1). Наиболее низколежащими путями [1,3]-сигматропной перегруппировки в этих системах являются запрещенные по симметрии пути *sr*-типа через **TS2**.

В реакции 1 с SiN₂H₂C₂H₂ *π*-комплексы не образуются, а реакция (2+1)циклоприсоединения блокируется как кинетически, так и термодинамически (табл. 1). (4+1)-Циклоприсоединению SiN₂H₂C₂H₂ к 1 соответствует умеренный положительный активационный барьер: 48 кДж/моль (CBS-QB3). Дисротаторное вращение метиленовых групп 1,3-диена в этой реакции согласуется с экспериментальными данными (Pure Appl. Chem. 1996. Vol. 68, № 4. Р. 785–788.).

Обобщая полученные данные по системам $SiR_2 - 1$, можно заключить, что для реакций (2+1)- и (4+1)-циклоприсоединения в ряду SiH₂ ~ SiMe₂ < SiHCl ~ SiHF < SiCl₂ < SiF₂ < SiN₂H₂C₂H₂ наблюдается последовательное снижение способности, выражающееся реакционной В падении экзотермичности процессов и росте активационных барьеров. При этом рост барьеров для (4+1)циклоприсоединения происходит существенно менее резко, чем рост энергии (2+1)-циклоприсоединения, активации для что, В конечном счете, обуславливает блокировку последнего канала превращения для малореакционноспособных силиленов (SiHal₂, $SiN_2H_2C_2H_2$). В отношении величины активационных барьеров для [1,3]-сигматропной перегруппировки не наблюдается такой же четкой тенденции. Для супраповерхностных [1,3]сигматропных сдвигов через TS1 (SiH₂, SiMe₂) или TS2 (SiHHal, SiHal₂, SiN₂H₂C₂H₂) максимальная энергия активации (CBS-QB3) достигается для системы SiMe₂ – C₄H₆ (124 кДж/моль), а минимальная – для системы $SiN_2H_2C_2H_2 - C_4H_6$ (51 кДж/моль); в последнем случае это, тем не менее, не имеет практического значения, поскольку образование 2 оказывается нереализуемым каналом как при реакции $SiN_2H_2C_2H_2$ с 1, так и, вероятно, в реакции экструзии силилена из 3 (табл. 1.). Обнаруженную экспериментально возможность нестереоспецифичного протекания реакции между силиленами и 1,3-диенами при высоких температурах в общем случае можно связать с различными превращениями 2-винилсилиранов.

В качестве объектов исследования реакций гермиленов с бута-1,3-диеном были выбраны гермилены, аналогичные рассмотренным выше силиленам: GeH₂, GeMe₂, GeHF, GeHCl, GeF₂, GeCl₂ и GeN₂H₂C₂H₂. В отличие от систем SiR₂ – C₄H₆ (R = H, Me) при взаимодействии GeR₂ (R = H, Me) с бута-1,3диеном возможно образование π -комплексов 9 и 10 (рис. 3), приводящее к существенному понижению энергии систем. Однако, согласно расчетам методом CBS-QB3, превращение 9 и 10 в более стабильные 2-винилгермираны

11 по реакции (2+1)-циклоприсоединения происходит безбарьерно (табл. 2). Близость энергий и возможное отсутствие барьера превращения 9 и 10 в 11 делает эти частицы кинетически неразличимыми. Образование существенно более стабильных гермациклопент-3-енов 12 в данных системах протекает через сходные переходные состояния **TS12**, которые отвечают супраповерхностным процессам (4+1)-циклоприсоединения для GeH₂ и [1,3]сигматропной перегруппировки si-типа для GeMe₂, поскольку в рамках использованных DFT методов TS12 связывают 12 с 9 или 11, соответственно. Отнесение TS12 к двум разным реакциям в данном случае не носит принципиального характера и является результатом уплощения участка ППЭ в окрестности 9 и, как следствие, вырождения обоих путей. Барьеры, соответствующие TS12 и отделяющие 11 от 12, более чем в 1.5 раза ниже аналогичных барьеров, определяемых **TS1** в системах $SiR_2 - C_4H_6$ (R = H, Me). Это предполагает существенно меньшую стабильность 2-винилгермиранов в сравнении с 2-винилсилиранами и, следовательно, меньший вклад побочных реакций 2-винилгермиранов в общий ход процесса. Гомолитический разрыв связей Ge-C и тем более C-C в гермиранах 11 с образованием триплетных бирадикалов 13 и 14 (рис. 1) эндотермичен, и роль бирадикальных путей в реакциях гермиленов с 1,3-диенами должна быть еще менее существенной, чем в реакциях силиленов.

В случае GeHHal (Hal = F, Cl) безактивационное образование π -комплексов 9 и 10 является термодинамически нейтральным процессом ($\Delta G_{298}^{\circ} \sim 0$). Дальнейшая перегруппировка 9 и 10 в 1-галоген-2-винилгермираны 11 оказывается термодинамически невыгодна. Как и в случае SiHHal для реакций (4+1)-циклоприсоединения из 9 через TS12 была обнаружена сильная зависимость энергии активации от ориентации аналогов карбенов. В случае наиболее выгодного подхода GeHHal активационный барьер, как и для SiHHal, составляет лишь несколько кДж/моль. При переходе от GeHHal к GeHal₂ и далее к GeN₂H₂C₂H₂ наблюдается значительное снижение реакционной способности гермиленов, проявляющееся в ослаблении связывания в πкомплексах 9 и их исчезновении в случае GeN₂H₂C₂H₂, термодинамической и кинетической блокировке канала (2+1)-циклоприсоединения, снижении экзотермичности образования 12 (для GeN₂H₂C₂H₂ образование 12 перестает быть термодинамически выгодным) и росте относительной энергии TS12 (табл. 2). При этом, однако, для обоих GeHal₂ сохраняется возможность относительно легкого протекания реакции супраповерхностного (4+1)-циклоприсоединения. На ППЭ систем с участием GeHHal, GeHal₂ и GeN₂H₂C₂H₂ для [1,3]сигматропной перегруппировки 11 В 12 обнаружены только высокоэнергетические каналы *аг*-типа (через TS17).

Таблица 2. Относительные энергии (ΔЕ₀, кДж/моль) и свободные энергии Гиббса (ΔG[°]₂₉₈, кДж/моль) структур, отвечающих стационарным точкам на ППЭ систем GeR $_2$ – C4H $_6$ (1)

C,H,	<u>202112</u> DB3	ΔG°_{298}	0	1	201	I	217	ı	227	1	229	168	175	176	2	159	304	106	289	I	I	I	I	291
GeNaH	CBS-(ΔE_0	0	•	153		170		179	•	182	122	130	132	-46	120	264	60	243		ı	ı	•	245
	OB3	ΔG°_{298}	0	10	119	0	119	ı	118	•	120	84	85	90	-94	130	178	44	ı	ı	•	1	ı	215
Gel	CBS-	ΔE_0	0	-29	69	-39	70	ı	69	ı	72	36	38	43	-147	06	138	4-	ı	ı	•	ı		165
н,	-0B3	ΔG°_{298}	0	18	175	L	179	-	179	ı	181	123	124	125	-80	165	196	65	248	-	•	-	-	240
Ge	CBS-	ΔE_0	0	-19	128	-29	131	ı	131	ı	134	76	77	62	-132	126	157	16	199	ı	I	ı	I	190
le,	<u>DB3</u>	ΔG°_{298}	0	I	ı	-10	-13	13	6	11	10	-43	-40	-34	-183	99	100	26	100	-	I	I	-	113
GeN	CBS-(ΔE_0	0	ı		-57	-64	-33	-42	-30	-41	-92	-88	-82	-237	24	59	-26	49	ı	I	ı		63
	OB3	ΔG°_{298}	0	-30	-34	-38	-36	-24	-29	-26	-27	-54	-53	-47	-186	47	92	7	69	ı		I	•	ı
	CBS-	ΔE_0	0	-71	-77	-78	-79	-64	-72	-65	-70	-97	-95	-89	-233	11	59	-38	25	ı	I	I	I	ı
GeH		ΔG°_{298}	0	-37	-27	-46	-29	-26	-21	-29	-20	-36	-35	-24	-159	48	112	3	62	34	22	25	24	-
	PBE/T	ΔE_0	0	-81	-73	-91	-75	-71	-68	-73	-66	-82	-80	-69	-207	9	73	-45	15	-13	-20	-17	-18	
	CTNVKTVNa		$1-t + GeR_2$	9-c	TS10-c	9-t	TS10-t	10-c	TS11-c	10-t	TS11-t	11-c	11-t	11-g	12	13	14	TS12	TS13	TS14	15	TS15	TS16	TS17

Для оценки релятивистских эффектов на влияния энергетику взаимодействия аналогов карбенов с бута-1,3-диеном проведены расчеты наиболее важных фрагментов ППЭ систем $ER_1R_2 - 1$ (E = Si, Ge; R₁, R₂ = H, Cl) методами РВЕ и RI-MP2//РВЕ в нерелятивистском и скалярно-релятивистском приближении. Показано, что основное влияние релятивистских эффектов заключается в относительной стабилизации двухвалентного состояния ER₁R₂, приводящего К уменьшению экзотермичности реакций образования валентнонасыщенных соединений. Для силиленов указанный эффект весьма мал (1 – 4 кДж/моль), в то время как для гермиленов он становится довольно значительным (от ~ 10 кДж/моль для GeH₂ до ~ 20 кДж/моль для GeCl₂). На базе проведенных нерелятивистских расчетов было продемонстрировано, что расчеты методом RI-MP2//PBE при рассмотрении широкого круга систем дают более близкие к CBS-QB3 и G3(MP2)B3 результаты, чем расчеты методами функционала плотности РВЕ и ВЗLYP. Поэтому в качестве основного метода исследования систем $SnR_2 - 1$ (R = H, Me, Cl) был выбран метод RI-MP2(Full)/rA22//PBE/rA2 (далее RI-MP2).

Исследования ППЭ систем $SnR_2 - 1$ показало, что, как и ожидалось, для станниленов релятивистские эффекты весьма велики (от ~ 25 кДж/моль для SnH_2 до ~ 35 кДж/моль для $SnCl_2$). Основное отличие станниленовых систем от аналогичных гермиленовых систем заключается в том, что образование 2-винилстанниранов **18** (рис. 1) является термодинамически невыгодным и поэтому первоначально образующиеся π -комплексы **16** (рис. 3) участвуют лишь в реакции (4+1)-циклоприсоединения с образованием станнациклопент-3-енов **19**. Полученные методом RI-MP2 результаты позволяют проследить некоторые тенденции в изменении реакционной способности в системах аналог карбенов – бута-1,3-диен в зависимости от природы центрального атома в аналогах карбенов.

Для систем EH₂ – 1 (рис. 5) первая стадия взаимодействия является безактивационной: в случае SiH₂ образуется 2-винилсилиран 2 ($\Delta E_0 = -190$ кДж/моль), в случае GeH₂ и SnH₂ образуются π -комплексы 9 ($\Delta E_0 = -83$ кДж/моль) и 16 ($\Delta E_0 = -54$ кДж/моль), соответственно. Во всех случаях понижение энергии системы превосходит (для SiH₂ с большим избытком) энтропийный фактор и делает первую стадию указанных процессов термодинамически выгодной при нормальных условиях. π-Комплексы в системах GeH₂ - C₄H₆ и SnH₂ - C₄H₆ способны легко изомеризоваться в существенно более стабильные гетероциклопент-3-ены: для изомеризации 9-с в 12 через TS12 энергия активации составляет 33 кДж/моль, а для изомеризации 16-с в 19 через TS20 28 кДж/моль. [1,3]-Сигматропная перегруппировка 2винилсилирана 2-с в силациклопент-3-ен 3 через TS1 требует преодоления довольно большого активационного барьера (99 кДж/моль), но, поскольку экспериментальное генерирование силиленов проводилось, как правило, в жестких условиях, именно силациклопент-3-ены чаще всего выделялись в качестве конечных продуктов реакции.

Рисунок 5. Энергетическая диаграмма систем $EH_2 - C_4H_6$ (E = Si, Ge, Sn) согласно расчетам методом RI-MP2(Full)/rA22//PBE/rA2

гетероциклопент-3-енов Образование BO всех случаях является термодинамически выгодным. При этом при переходе от SiH₂ ($\Delta E_0 = -328$ кДж/моль) к GeH₂ ($\Delta E_0 = -238$ кДж/моль) и далее к SnH₂ ($\Delta E_0 = -143$ кДж/моль) экзотермичность реакции уменьшается. Это уменьшение может не коррелировать со скоростью взаимодействия активных силиленов, гермиленов и станниленов с 1,3-диенами из-за достаточно экзотермичной во всех случаях первой стадии и способности π-комплексов к легкой дальнейшей изомеризации. Наиболее энергетически выгодные пути образования гетероциклопент-3-енов **TS1**, **TS12**, первичных интермедиатов через **TS20** ИЗ являются супраповерхностными каналами.

В системах $ECl_2 - 1$ (рис. 6) первой стадией взаимодействия является низкоэкзотермичное безактивационное образование π -комплексов. Реакции (2+1)-циклоприсоединения могут легко протекать только в случае системы SiCl₂ - C₄H₆. Уже для системы GeCl₂ - C₄H₆ канал (2+1)-циклоприсоединения оказывается кинетически и термодинамически заблокирован. Для всех трех систем легко протекает супраповерхностное (4+1)-циклоприсоединение, при этом относительные энергии соответствующих этому каналу переходных состояний, **TS1** ($\Delta E_0 = -3$ кДж/моль), **TS12** ($\Delta E_0 = -6$ кДж/моль) и **TS20** ($\Delta E_0 = -3$ кДж/моль) оказываются близки. В ряду SiCl₂ > GeCl₂ > SnCl₂ наблюдается падение экзотермичности образования 1,1-дихлорогетероциклопент-3-енов (ΔE_0 = -265 кДж/моль для **3**, -139 кДж/моль для **12** и -40 кДж/моль для **19**).

Рисунок 6. Энергетическая диаграмма систем $C_4H_6 - ECl_2$ (E = Si, Ge, Sn) согласно расчетам методом RI-MP2(Full)/rA22//PBE/rA2

Проведенные квантово-химические расчеты способность показали карбенов реагировать образованием широкого круга аналогов с 1 с термодинамически наиболее выгодных продуктов - гетероциклопент-3-енов посредством сравнительно низкоэнергетических трансформаций первичных продуктов реакций, чаще всего π-комплексов. Этот факт объясняет способность 1,3-диенов выступать в роли универсальных перехватчиков аналогов карбенов.

Исследование механизмов реакций ECl₂ (E = Si, Ge) с гекса-1,3,5-триеном

При исследовании ППЭ систем ECl_2 – гекса-1,3,5-триен (E = Si, Ge) рассматривались в основном каналы супраповерхностного (4+1)циклоприсоединения, которые, как было показано на примере систем ECl_2 – бута-1,3-диен (E = Si, Ge), приводят к термодинамически выгодным продуктам и являются наиболее низкоэнергетическими, а также возможные каналы реакции (6+1)-циклоприсоединения. Анализировалось взаимодействие ECl_2 с Z-и E-изомерами гекса-1,3,5-триена (**22-C** и **22-T**, соответственно).

Первичными продуктами безбарьерного взаимодействия между ECl₂ и гекса-1,3,5-триеном являются π -комплексы (23/26, для E = Si/Ge), способные к дальнейшей изомеризации в более стабильные продукты. Для реакции (4+1)циклоприсоединения были локализованы все типы ожидаемых переходных состояний (TS24-TS25/TS29-TS30, рис. 7). Относительные энергии указанных переходных состояний коррелируют с относительной энергией соответствующих конформеров гекса-1,3,5-триена, при этом предпочтительной является атака ECl₂ по наименее замещенному атому C(1) (ΔE_0 (TS24/TS29) \leq $(\Delta E_0$ (**TS25/TS30**)). По сравнению с системами ECl₂ – бута-1,3-диен в случае Егекса-1,3,5-триена наблюдается немного более легкое, а в случае Z-гекса-1,3,5более протекание (4+1)триена чуть затрудненное реакции циклоприсоединения. Во всех случаях активационные барьеры невелики (табл. 3).

При взаимодействии ECl₂ с Z-гекса-1,3,5-триеном возможно протекание реакции (6+1)-циклоприсоединения. Для этого процесса были найдены супра-(TS28/TS34) и антараповерхностные (TS27/TS33) каналы. В обоих случаях именно антараповерхностная циклизация является путем взаимодействия, (табл. 3). лежащим ниже по энергии Продукты реакции (6+1)циклоприсоединения 25/28 на ~ 30 кДж/моль (CBS-QB3) более стабильны, чем реакции (4+1)-циклоприсоединения 24/27, продукты при ЭТОМ [1,3]сигматропная перегруппировка между ними даже в случае самого выгодного *sr*-канала (**TS26**/**TS32**) затруднена ($E_a \sim 150$ кДж/моль относительно **24**/**27**).

Говоря о конкуренции между различными реакциями циклоприсоединения, следует отметить (рис. 8), что в случае Е-гекса-1,3,5-триена для обоих ECl₂ наиболее легко протекает (4+1)-циклоприсоединение. В случае Z-гекса-1,3,5-триена для SiCl₂ можно ожидать конкуренции между реакциями (2+1)-, (4+1)- и (6+1)-циклоприсоединения, тогда как для GeCl₂ немного более выгодной является реакция (6+1)-циклоприсоединения, которая и была обнаружена экспериментально (Изв. АН СССР, Сер. хим. 1971. № 11. С. 2615–2616). При переходе от SiCl₂ к GeCl₂ (6+1)-циклоприсоединение облегчается, а (4+1)-циклоприсоединение затрудняется.

Рисунок 7. Структуры, отвечающие стационарным точкам на ППЭ систем $ECl_2 - C_6H_8$ (E = Si, Ge)

Таблица 3. Относительные энергии (ΔE_0 , кДж/моль) и свободные энергии Гиббса (ΔG_{298}° , кДж/моль) структур, отвечающих стационарным точкам на ППЭ систем ECl₂ – C₆H₈ (**22**) (E = Si, Ge)

CTRAVETAR	PBE	/TZ2P	CBS	S-QB3		PBE	E/TZ2P	CBS	S-QB3
Структура	ΔE_0	ΔG_{298}	ΔE_0	ΔG_{298}	Структура	ΔE_0	ΔG_{298}	ΔE_0	ΔG_{298}
22-Ttt +	0	0	0	0	22-Ttt +	0	0	0	0
SiCl ₂	0	0	0	0	GeCl ₂	0	0	0	0
23-Ctt	-32	16	-24	17	26-Ctt	-26	19	-36	4
23-Ttt	-42	6	-32	9	26-Ttt	-35	8	-44	-4
TS24-Cc	24	76	22	71	TS29-Cc	37	91	17	68
TS24-Ct	9	61	12	61	TS29-Ct	29	83	13	63
TS24-Tc	-5	45	-1	47	TS29-Tc	14	67	-2	47
TS24-Tt	-20	34	-15	35	TS29-Tt	5	59	-10	40
TS25-Cc	33	84	20	70	TS30-Cc	43	97	19	69
TS25-Ct	23	76	13	63	TS30-Ct	37	90	-	-
TS25-Tc	17	67	7	55	TS30-Tc	27	79	-	-
TS25-Tt	8	59	1	49	TS30-Tt	18	69	-	-
24	-170	-116	-225	-174	27	-60	-6	-126	-75
-	-	-	-	-	TS31	116	176	82	138
TS26	-47	14	-77	-21	TS32	69	130	24	81
TS27	10	64	13	63	TS33	19	72	6	56
TS28	-	-	99	150	TS34	102	158	110	162
25	-207	-150	-259	-203	28	-99	-42	-157	-101

Рисунок 8. Энергетическая диаграмма систем $SiCl_2 - C_6H_8$ (сплошные линии) и $GeCl_2 - C_6H_8$ (пунктирные линии) согласно расчетам методом CBS-QB3

Исследование механизмов реакций аналогов карбенов с бензолом

При исследовании ППЭ систем ER₂ – бензол (**29**) (E = Si, Ge; R = H, Me, Cl) основное внимание уделялось процессам (2+1)-, (4+1)-циклоприсоединения и внедрения по связи C-H бензола. Для всех частиц на первой стадии взаимодействия безбарьерно образуются π -комплексы **30**/**38** и **31**/**39** (E = Si/Ge, рис. 9), стабилизированные относительно исходных реагентов на 20 – 40 кДж/моль (CBS-QB3), что в энергетическом плане сопоставимо с эффектом от уменьшения энтропии при нормальных условиях ($\Delta G_{298}^{\circ} \sim 0$).

В ходе реакции (2+1)-циклоприсоединения SiH₂ происходит изомеризация 7-силаноркарадиен 32, комплекса 30 через ТS35 в который легко перегруппировывается путем разрыва связи С(1)-С(2) в силациклогепта-2,4,6триен 33 через TS36. Данное превращение $(30 \rightarrow 32 \rightarrow 33)$ является примером каскадного процесса. Протекание аналогичного каскадного процесса предполагается при термической реакции диарилсилиленов с бензолом (J. Am. Сhem. Soc. 1994. Vol. 116, № 25. Р. 11572–11573). В случае GeH₂ (2+1)циклоприсоединение $(38 \rightarrow 40)$ эндотермично, а образование гермациклогепта-2,4,6-триена (41) не является термодинамически выгодным при нормальных условиях. Поэтому в этом случае каскадный процесс не реализуется (рис. 10). Подобные реакции для гермиленов не описаны.

Для реакций (4+1)-циклоприсоединения EH_2 (E = Si, Ge) с образованием 7гетеронорборнадиенов 34/42 найдены переходные состояния TS37/TS45, умеренные положительные относительно которым отвечают исходных реагентов энергии активации 43/66 кДж/моль (CBS-QB3). Этот тип реакций является термодинамически выгодным только для SiH₂. Однако, и в этом (4+1)-циклоприсоединения протекание реакции случае представляется маловероятным, поскольку рассмотренный выше каскадный процесс имеет существенно более низкие активационные параметры. Важно также отметить, что согласованный распад 34/42 через TS37/TS45 более выгоден, чем стадийный путь через образование триплетных бирадикалов 36/44 (рис. 9, 10).

Реакции внедрения EH₂ в связь C-H (**TS38-TS39/TS46-TS47**), приводящие к образованию фенилсилана (**35**)/фенилгермана (**43**) являются с термодинамической точки зрения наиболее выгодными из рассмотренных процессов. В тоже время им отвечают наибольшие активационные барьеры. Для реакции термораспада **35** расчеты CBS-QB3 и G3(MP2)B3 правильно предсказывают предпочтительность реакции элиминирования H₂ (через **TS41**) по сравнению с экструзией SiH₂ (через **TS38**) и хорошо воспроизводят величины экспериментально определенных барьеров (J. Phys. Chem. 1995. Vol. 99, № 23. P. 9397–9402).

Е

E

 SiH_2 / GeH_2

C(4)

Рисунок 9. Структуры, отвечающие стационарным точкам на ППЭ систем EH₂ $-C_6H_6$ (E = Si, Ge)

Таблица 4. Относительные энергии (ΔE_0 , кДж/моль) и свободные энергии Гиббса (ΔG_{298}° , кДж/моль) структур, отвечающих стационарным точкам на ППЭ систем SiR₂ – C₆H₆ (**29**)

		Si	H_2		Si	Me ₂	SiCl ₂			
Структура	PBE	/TZ2P	CBS	S-QB3	CBS	S-QB3	CBS	S-QB3		
	ΔE_0	ΔG_{298}	ΔE_0	ΔG_{298}	ΔE_0	ΔG_{298}	ΔE_0	ΔG_{298}		
$29 + SiR_2$	0	0	0	0	0	0	0	0		
30	-44	-1	-33	-2	-23	4	-26	3		
31	-33	4	-33	-4	-19	7	-27	2		
32	-46	-1	-47	-9	-59	-14	40	85		
33	-95	-50	-107	-71	-120	-75	-52	-10		
34	-74	-25	-96	-53	-109	-58	-46	4		
35	-211	-169	-226	-193	-232	-191	-160	-121		
TS35	-32	14	-14	24	-2	44	98	143		
TS36	-14	33	-14	25	-34	12	57	103		
TS37	36	83	43	82	49	91	51	94		
TS38	12	57	46	83	78	120	186	230		
TS39	25	69	54	91	69	112	155	197		
TS40	37	84	-	-	50	98	-	-		
36	47	90	60	92	61	99	125	163		
TS41	1	44	24	59						
37	-14	28	-17	14						
$C_6H_5SiH + H_2$	-12	2	-19	-12						
TS42	18	63	50	87						

При переходе от EH₂ к EMe₂ происходит повышение относительной энергии π -комплексов и всех переходных состояний кроме **TS36** (E = Si) и **TS44** и **TS45** (E = Ge). Следствием этого является возрастание активационных барьеров для всех трех основных реакций. При этом относительная энергия валентнонасыщенных соединений, напротив, либо понижается, либо остается практически неизменной, что вместе с увеличением барьеров приводит к повышению устойчивости этих соединений в отношении реакций распада. Для SiMe₂ сохраняется возможность легкого протекания каскадного процесса **30** \rightarrow **32** \rightarrow **33** (табл. 4).

Системы $ECl_2 - C_6H_6$ характеризуются тем, что все три основные реакции в обеих системах оказываются кинетически и (или) термодинамически заблокированы. Для SiCl_2 все реакции, кроме (2+1)-циклоприсоединения, являются экзотермичными, но имеют высокие активационные барьеры (табл. 4). Для GeCl_2 помимо образования π -комплексов лишь реакция внедрения оказывается экзотермичной и при этом маловероятной из-за весьма больших активационных барьеров и лишь небольшого ($\Delta G_{298}^{\circ} = -24$ кДж/моль, CBS-QB3) снижения свободной энергии системы.

выводы

- Впервые методами квантовой химии высокого уровня проведено систематическое исследование механизмов реакций аналогов карбенов с сопряженными углеводородами на примере реакций с бута-1,3-диеном, гекса-1,3,5-триеном и бензолом. Установлены общие пути превращений в этих системах, выявлены особенности, связанные с влиянием природы валентноненасыщенного центра и заместителей в аналогах карбенов. Показано, что имеющиеся экспериментальные данные хорошо согласуются с рассмотренной общей схемой превращений.
- Реакции аналогов карбенов с сопряженными соединениями являются, как правило, многостадийными процессами, первой стадией которых является безактивационное образование π-комплексов, способных превращаться далее в термодинамически более стабильные продукты циклоприсоединения.
- 3. В реакциях (2+1)- и (4+1)-циклоприсоединения к бута-1,3-диену в рядах $EH_2 \sim EMe_2 < EHHal < EHal_2 < EN_2H_2C_2H_2$ (E = Si, Ge; Hal = F, Cl) и SiR₂ < $GeR_2 < SnR_2$ (R = H, Cl), включающих основные типы аналогов карбенов, происходит снижение реакционной способности этих интермедиатов, выражающееся в падении экзотермичности процессов и росте барьеров При рост барьеров (4+1)активации. ЭТОМ для реакции циклоприсоединения в указанных рядах происходит существенно менее энергий активации (2+1)резко, чем рост для реакции циклоприсоединения, что, в конечном счете, блокирует канал (2+1)циклоприсоединения для малоактивных силиленов и гермиленов (EHal₂, $EN_{2}H_{2}C_{2}H_{2}$) и всех станниленов. В то же время протекание реакций (4+1)циклоприсоединения остается достаточно легким и термодинамически выгодным практически для всех аналогов карбенов, что определяет способность 1,3-диенов служить универсальными перехватчиками этих интермедиатов.
- 4. Для (4+1)-циклоприсоединения [1,3]-сигматропной реакций И карбенов бута-1,3-диен перегруппировки В системах аналог _ наименьшую энергию активации имеют супраповерхностные каналы превращения. В то время как для реакции (6+1)-циклоприсоединения в системах ECl_2 – гекса-1,3,5-триен (E = Si, Ge), напротив, обнаружена предпочтительность антараповерхностного сближения реагентов. Реакция (6+1)-циклоприсоединения является весьма быстрым процессом даже для малоактивных силиленов и гермиленов.
- 5. В результате рассмотрения систем ER₂ бензол (E = Si, Ge; R = H, Me, Cl) показано, что реакция внедрения по C-H связи, приводящая к

термодинамически наиболее выгодным продуктам, оказывается кинетически затруднена. Для двух систем, $SiR_2 - C_6H_6$ (R = H, Me), найдена возможность относительно легкого образования соответствующих силациклогепта-2,4,6-триенов в результате каскадного процесса. Для других систем низкоэнергетических путей трансформации первоначально образующихся π -комплексов не обнаружено.

Основное содержание диссертации изложено в следующих публикациях:

- Rynin, S. S. Computational study of 2-vinylsilirane to silacyclopent-3-ene rearrangement / S. S. Rynin, P. V. Kulikov, V. I. Faustov, S. E. Boganov, M. P. Egorov, O. M. Nefedov // J. Mol. Struct. (THEOCHEM) – 2010. – Vol. 942, № 1–3. – P. 60–65.
- Рынин, С. С. Квантово-химическое исследование реакций циклоприсоединения GeCl₂ к непредельным органическим соединениям на примере этилена, бута-1,3-диена и гекса-1,3,5-триена / С. С. Рынин, В. И. Фаустов, С. Е. Боганов, М. П. Егоров, О. М. Нефедов // Изв. АН, Сер. хим. – 2010. – № 6. – С. 1078–1087.
- Rynin, S. S. Computational study of reaction pathways in the course of interaction of deactivated silylenes with buta-1,3-diene / S. S. Rynin, V. I. Faustov, S. E. Boganov, M. P. Egorov, O. M. Nefedov // J. Organomet. Chem. 2010. Vol. 695, № 21. P. 2345–2353.
- Рынин, С. С. Квантово-химическое исследование реакций силиленов (SiH₂, SiHF, SiF₂) с бутадиеном / С. С. Рынин, П. В. Куликов, В. И. Фаустов, М. П. Егоров // XVIII Менделеевский съезд по общей и прикладной химии : тезисы докладов. – Москва, 2007 – Т. 1. – С. 409.
- Фаустов, В. И. Реакции силиленов и гермиленов с ненасыщенными соединениями. Поверхности потенциальной энергии и механизмы превращений / В. И. Фаустов, С. С. Рынин, П. В. Куликов, А. А. Бирюков, М. П. Егоров // XIX Симпозиум «Современная химическая физика» : тезисы докладов. – Туапсе, 2007. – С. 299–300.
- Рынин, С. С. Квантово-химическое исследование реакций силиленов с бутадиеном / С. С. Рынин, П. В. Куликов, В. И. Фаустов, М. П. Егоров // III Всероссийская конференция-школа «Высокореакционные интермедиаты химических реакций» : тезисы докладов. – Московская область, 2008. – С. 87.
- Рынин С. С. Квантово-химическое исследование реакций SiH₂, GeH₂ и SnH₂ с бутадиеном / С. С. Рынин, М. П. Егоров, О. М. Нефедов // Всероссийская конференция «Итоги и перспективы химии элементоорганических соединений» : тезисы докладов. – Москва, 2009. – С. 125.
- Рынин, С. С. Квантово-химическое исследование реакций SiH₂ и GeH₂ с бензолом / С. С. Рынин, С. Е. Боганов, М. П. Егоров, О. М. Нефедов // Всероссийская конференция по органической химии : тезисы докладов. – Москва, 2009. – С. 367.