52

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М. В. ЛОМОНОСОВА

Химический факультет

004612005

На правах рукописи

Чемагин Андрей Валерьевич

СИНТЕЗ ПОЛИЦИКЛИЧЕСКИХ ЦИКЛОПРОПАНОВЫХ АМИНОКАРБОНОВЫХ И АМИНОФОСФОНОВЫХ КИСЛОТ

02.00.03 — органическая химия 02.00.08 — химия элементоорганических соединений

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата химических наук

2 8 OKT 2010

Москва — 2010

61

Работа выполнена на кафедре органической химии Химического факультета МГУ им. М.В. Ломоносова.

Научные руководители:

доктор химических наук, вед. научн. сотр.

Кузнецова Т. С.

кандидат химических наук, ст. научн. сотр.

Яшин Н. В.

Официальные оппоненты:

доктор химических наук

Лермонгов Сергей Андресвич

доктор химических наук, профессор

Коротесв Михаил Петрович

Ведущая организация:

Институт Элементоорганических Соединений

им. А. Н. Несмеянова РАН

Защита состоится «10» ноября 2010 г. в 11 часов на заседании диссертационного совета Д 501.001.69 по химическим наукам при Московском Государственном Университете им. М. В. Ломоносова по адресу: 119991, Москва, Ленинские горы, дом 1, строение 3, ГСП-1, МГУ, Химический факультет, аудитория 446.

С диссертацией можно ознакомиться в библиотеке Химического факультета МГУ.

Автореферат разослан «8» октября 2010 г.

Ученый секретарь Диссертационного совета доктор химических наук Диева Т.В.

ОБШАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуяльность темы. Ограничение конформационной подвижности является на сегодняшний день одним из наиболее широко используемых приемов в медицинской химии при выборе перспективных в качестве лигандов тех или иных рецепторов структур для синтеза. Применение данного подхода позволяет создавать физиологически активные вещества с улучшенными параметрами активности, биодоступности и селективности. Одним из наиболее часто используемых методов ограничения подвижности является введение в молекулы перспективных соединений циклических фрагментов, в частности, малых циклов. В настоящее время актуальным направлением является поиск новых конформационно жестких аналогов природных аминокислот. Аминокислоты, содержащие циклопропановый фрагмент, входят в состав высокоэффективных фармацевтических препаратов, играют важную роль в изучении процессов метаболизма и механизмов действия ферментов. Встроенные в пептидные последовательности, они изменяют структуру белка и, как следствие, биологические свойства. В отличие от непредельных аминокислот, циклопропановые аминокислоты сохраняют асимметрические центры.

Еще одним мощным инструментом создания физиологически активных веществ является биоизостерическая замена, позволяющая модифицировать соединение-лидер с целью улучшения фармакологических характеристик. Для карбоксильной группы в качестве одной из наиболее распространенных биоизостерных групп можно выделить фосфонатную. α-Аминофосфоновые кислоты как аналоги соответствующих аминокислот в последнее время находят все большее применение в качестве антибактериальных препаратов, гербицидов и регуляторов роста растений. Тетраэдрическая структура фосфонатной группы делает возможным использование аминофосфоновых кислот в качестве «аналогов переходного состояния», что было использовано для создания ингибиторов ферментов. Область применения аминофосфоновых кислот не ограничивается созданием физиологически активных веществ. Как полифункциональные соединения, они могут выступать в роли лигандов, что позволяет их использовать при создании ионселективных электродов, селективных комплексонов и экстрагентов, транспортных агентов и ионообменных смол.

Особый интерес представляют циклопропановые α-аминофосфоновые кислоты как биоизостерные, с уменьшенной конформационной подвижностью, аналоги соответствующих аминокислот. Анализ литературных данных показал, что этим соединениям уделяется существенно меньше внимания, по сравнению и с циклопропановыми аминокислотами, и с ациклическими аминофосфонатами. Более того, отсутствует общий метод синтеза аминофосфоновых кислот, содержащих малые циклы. Поэтому разработка общего универсального подхода к таким соединениям является актуальной задачей.

<u>Ислью настоящей работы</u> явился целенаправленный синтез двухосновных аминокислот спиропентанового ряда — потенциальных лигандов глутаматных рецепторов — 1аминоспиро[2.2]пентан-1,4-дикарбоновой и 4-амино(карбокси)метилспиро[2.2]пентан-1карбоновой кислот, синтез конформационно жестких аналогов γ-аминомасляной кислоты, изучение реакционной способности диазофосфонатов по отношению к алкенам с разработкой на этой основе общих синтетических подходов к α-аминофосфоновым кислотам, содержащим малые циклы.

Научная новизна и практическая ценность работы. Разработаны и выполнены синтезы новых двухосновных аминокислот спиропентанового ряда — 4-(амино(карбокси)метил)спиро[2.2]пентан-1-карбоновой кислоты и 1-аминоспиро[2.2]пентан-1,4-ди-карбоновой кислоты, перспективных потенциальных лигандов глутаматных рецепторов.

Предложены методы синтеза спиросочлененных циклопропановых аминокислот — конформационно жестких аналогов у-аминомасляной кислоты и перспективных лигандов ГАМК-рецепторов.

Изучена реакционная способность диазофосфонатов по отношению к олефинам различного строения в условиях каталитического [1+2]-циклоприсоединения. Выявлены закономерности протекания реакции в зависимости от строения исходных субстратов.

Предложен новый метод синтеза перспективного диазореагента для получения циклопропановых α-аминофосфоновых кислот — нитро(диазо)метилфосфоната и изучены его реакции с алкенами. Показано, что, в зависимости от строения олефина, нитрофосфонокарбен наряду с основным направлением реагирования — [1+2]-циклоприсоединением к алкенам с образованием α-нитроциклопропанфосфонатов — может выступать в качестве 1,3-диполя или перегруппировываться в нитрозокарбонилфосфонат.

Разработан препаративно-удобный общий метод синтеза α-аминоциклопропанфосфоновых кислот, основанный на восстановлении нитрофосфонатов с последующим гидролизом диэтоксифосфорильного фрагмента. Получен ряд новых циклопропановых и триангулановых аминофосфоновых кислот.

Впервые изучена реакция аминофосфорилирования в ряду альдегидов, содержащих малые циклы. Получен ряд α-амино-α-циклопропилфосфонатов, непосредственных синтетических предшественников биоизостерных аналогов циклопропилглицина.

Апробация работы. Основные материалы диссертации были представлены в виде устных докладов на международных конференциях студентов и аспирантов по фундаментальным наукам «Ломоносов-2007» (Москва, 2007) и «Ломоносов-2009» (Москва, 2009),

на пятой международной конференции молодых ученых по органической химии InterY-COS 2009 (St.-Petersburg, 2009), Всероссийской конференции «Химия нитросоединений и родственных азот-кислородных систем» (Москва, 2009), XII Молодежной конференции по органической химии (Суздаль, 2009), а также на Международном Симпозиумс «Advanced Science in Organic Chemistry» (Мисхор, 2010).

Данная работа была выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 05-03-32906), Российской Академии Наук (программа «Биомолекулярная и медицинская химия) и Минобрнауки РФ (гранты НШ 2552.2006.3 и МК 3156.2005.3).

<u>Публикации.</u> По результатам работы опубликовано 4 стагьи и 13 тезисов докладов.

Структура работы. Диссертация изложена на 157 страницах и состоит из введения, литературного обзора, посвященного методам синтеза и реакционной способности диазосоединений, содержащих фосфонатную группу, обсуждения результатов, экспериментальной части, выводов и списка цитируемой литературы. Работа содержит 95 схем, 45 таблиц и 6 рисунков, библиографический список состоит из 202 литературных ссылок.

ОСНОВНОЕ СОЛЕРЖАНИЕ РАБОТЫ

Экспериментальные исследования, выполненные в работе, проводились в двух направлениях. Первая часть работы посвящена целенаправленному синтезу спироциклических циклопропановых аминокислот — конформационно жестких аналогов глутаминовой и γ-аминомасляной кислот. Во второй части диссертационной работы была изучена реакции Кабачника-Филдса в ряду циклопропил- и циклобутилкарбальдегидов, исследованы реакции каталитического [1+2]-циклоприсоединения диазофосфонатов к олефинам и разработаны подходы к циклопропановым α-аминофосфоновым кислотам различного строения.

1. Синтез спироциклических циклопропановых аминокислот.

Синтез целевых спиросочлененных циклопропановых аминокислот 1–4 (Рис. 1) был осуществлен на основе реакций каталитического [1+2]-циклоприсоединения диазоацетатов к замещенным метиленциклоалканам, содержащим сложноэфирные группировки в малом цикле, с последующей трансформацией полученных аддуктов в конечные соединения.

Рисунок 1. Целевые циклопропановые аминокислоты 1-4.

Следует подчеркнуть, что аминокислоты 1 и 2 являются представителями двух разных типов циклопропановых аминокислот. Так, 4-амино(карбокси)метилспиро[2.2]пентан-1-карбоновая кислота (1) может быть рассмотрена, как производное циклопропилглицина (ЦПГ), в то время, как 1-аминоспиро[2.2]пентан-1,4-дикарбоновая кислота (2) относится к ряду 1-аминоциклопропанкарбоновой кислоты (АЦК). В соответствии с этим, методы синтеза данных соединевий имеют существенные различия.

1.1. Синтез 4-(амино(карбокси)метил)спиро[2.2]пентан-1-карбоновой кислоты (1).

Ранее в нашей лаборатории было показано, что препаративно-удобным методом синтеза циклопропилглицинов является реакция Штреккера в модификации Бухерера-Берга с использованием в качестве исходных соединений альдегидов, содержащих малые циклы. Мы применили эту стратегию в синтезе двухосновной аминокислоты 1, с использованием спиропентанового альдегида 8. Это соединение было получено окислением аддукта 7, получаемого [1+2]-циклоприсоединением диазоуксусного эфира к защищенному по гидроксильной группе метиленциклопропанкарбинолу 6 (Схема 1).

Схема 1.

Из альдегида 8 был получен непосредственный предшественник целевой аминокислоты 1 — гидантоин 9, гидролиз которого до целевой аминокислоты 1 может быть осуществлен с применением как щелочных, так и кислотных реагентов (Схема 2). Поскольку гидантоин 9 содержит лабильный спиропентановый фрагмент, то использовать кислотный гидролиз нецелесообразно ввиду возможного раскрытия трехчленных циклов напряженной спиропентановой системы.

Схема 2.

Поэтому мы выбрали метод разложения гидантонна 9 в щелочной среде с использованием гидроксида бария, что позволило нам получить двухосновную спиропентановую аминокислоту 1 с высоким выходом.

1.2. Синтез 1-аминоспиро[2.2]пентан-1,4-дикарбоновой кислоты (2).

Вторым перспективным соединением, представляющим интерес в качестве лиганда глутаматных рецепторов, является 1-аминоспиро[2.2]пентан-1,4-дикарбоновая кислота (2), являющая производным АЦК. Предложенный нами метод включает реакцию [1+2]- циклоприсоединения этилнитродиазоацетата (ЭНДА) к метиленциклопропанкарбоксилату, и эта реакция позволяет вводить в молекулу исходного олефина трехчленных цикл, содер-

жащий функциональные группы, превращаемые в аминокислотный фрагмент с помощью градиционных препаративных методов (Схема 3).

Схема 3.

Реакция каталитического [1+2]-циклоприсоединения протекает с образованием аддукта 11 в виде смеси двух диастереомеров в соотношении 1:1 с умеренным выходом. Важным моментом является выбор подходящего восстановителя для нитрогруппы, с учетом лабильности спиропентанового фрагмента соединения 11. При оптимизации условий осуществления этой реакции мы нашли, что при восстановлении нитроэфира 11 в системе Zn-AcOH-*i*-PrOH в мягких условиях с высоким выходом образуется соответствующий аминоциклопропанкарбоксилат 12, при омылении которого спиртовым раствором NaOH была получена целевая аминокислота 2 с высоким выходом.

1.3. Синтез конформационно жестких аналогов у-аминомасляной кислоты.

Реакция каталитического [1+2]-циклоприсоединения этилнитродиазоацетата была использована нами в синтезе еще двух перспективных аминокислот — конформационно жестких аналогов γ-аминомасляной кислоты — 4-аминоспиро[2.2]пентан-1-карбоновой кислоты (3) и 1-аминоспиро[2.3]гексан-5-карбоновой кислоты (4) (Рис. 1). Принципиальное отличие синтеза этих аминокислот от схемы получения аминокислоты 2 заключается в наличии стадии декарбоксилирования сложноэфирной группы, расположенной в α-положении к нитрогруппе (Схема 4, стадия b).

Схема 4.

а - ЭНДА, Rh2(OAc),; b - 1) NaOH, MeOH; 2) DMSO-H2O, 60°C; с - Zn, AcOH, i-РтОН; d - NaOH, EtOH

Обработка α-нитрокарбоксилатов 11 и 16 0.5 экв спиртового раствора NaOH позволяет селективно гидролизовать СООЕt-группу в этих соединениях. При последующем нагревании полученных солей во влажном ДМСО протекает декарбоксилирование, приводящее к образованию метил-4-нитроспиро[2.2]пентан-1-карбоксилата (13) и метил-1-нитроспиро[2.3]гексан-5-карбоксилата (17) с высокими выходами. Для восстановления нитросоединений 13 и 17 была использована система Zn-AcOH-i-PrOII, соответствующие амины 14 и 18 были получены с высокими выходами. Гидролиз спиртовым раствором NaOH позволил получить целевые спиросочлененные циклопропановые аминокислоты 3 и 4, относящиеся к новым конформационно жестким аналогам γ-аминемасляной кислоты. Образцы сиптезированных аминокислот 3 и 4 в настоящее время переданы на испытания физиологической активности.

2. Изучение реакций каталитического [1+2]-циклоприсоединения диазофосфонатов к олефинам. Синтез циклопропановых а-аминофосфоновых кислот.

Следующим этаном проводимых в данной работе исследований явилась разработка общих синтетических подходов к биоизостерным аналогам циклопропановых аминокислот — сламинофосфоновым кислотам, содержащим малые циклы. Как и в случае карбоксилатов, аминофосфонаты можно разделить на две большие группы — биоизостерные аналоги циклопропилглицина и биоизостерные аналоги 1-аминоциклопропанкарбоновой кислоты. Соответственно, подходы к синтезу соединений из этих групп различны — для аналогов ЦПГ мы использовали реакцию Кабачника-Филдса, а для аналогов АЦК были разработаны карбеновые методы синтеза.

2.1. Синтез а-циклопропил-а-аминофосфонатов.

Анализ литературных данных показал, что в настоящее время отсутствуют общие методы синтеза биоизостерных аналогов циклопропилглицинов. Мы предположили, что синтез α-циклопропилзамещеннных α-аминофосфонатов может быть реализован в соответствии с нижеприведенной ретросинтетической схемой (Схема 5).

Схема 5.

$$OH \longrightarrow OH \longrightarrow OR^{2}$$

$$OH \longrightarrow OR^{2}$$

$$OHO$$

$$OR^{2}$$

^{*}Изучение физиологической активности проводится в рамках сотрудничества с Центром психического здоровья РАМН.

Препаративно-удобным методом синтеза 1-аминофосфонатов различного строения является реакция Кабачника-Филдса, основанная на взаимодействии карбонильных соединений с первичными аминами и диалкилфосфитами. Однако, согласно литературным данным, изучение реакционной способности альдегидов, содержащие малые циклы, в этой реакции ранее не проводилось. Поэтому представляло интерес изучить в реакции Кабачника-Филдса следующих альдегидов циклоалканового ряда 8, 19–22 (Табл. 1).

Таблица 1. Синтез аминофосфонатов, содержащих малые циклы.

$$\begin{array}{c|c} & & & \\ \hline \\ & &$$

Карбоксилат	Спирт	Выход,%	Альдегид	Выход,%	Аминофосфонат	Выход,%
23	сн,он 	96	Сно 19	44	PhH ₂ CHN P(O)(OE() ₂ 30	70
C00Et	Cli ₂ OH	86	СНО 20	54	PhH ₂ CHN P(O _X OE _t) ₂	74
соон	сн ₂ он 28	90	СНО 21	88	PhH ₂ CtiN P(O)(OE) ₂	71
соон 25	сн ₁ он 29	90	CHO 222	38	PhH ₂ CHN P(O)(OE1) ₂	68
	CH ₃ OSiMe ₃ COOEt		CHO	95	PhH ₂ CHN, P(O)(OEI) ₂ COOEI 34	66

Альдегиды, содержащие малые циклы, были получены из соответствующих карбоксилатов 5, 23—25 по двухстадийной схеме: восстановление—окисление (Табл. 1). Первоначально выполняли восстановление циклопропилкарбоксилатов алюмогидридом лития до спиртов, которые затем окисляли по методу Кори до альдегидов с удовлетворительными выходами. Альдегид 8 был получен ранее при выполнении синтеза двухосновной аминокислоты 1.

Синтез а аминофосфонатов из альдегидов по реакции Кабачника-Филдеа хорошо изучен и подробно представлен в дитературе. Как правило, использование этого метода предполагает проведение реакций в сравнительно жестких условиях с использованием в качестве катализаторов активных кислот Льюиса (AlCl₃, ZnCl₂ и т.д.) или при длительном пагревании. Такие особсиности проведения реакции делали невозможным ее использование для альдегидов, содержащих лабильные циклопропановые группировки. Нам удалось осуществить аминофосфорилирование серии альдегидов 8, 19-22, применив метод синтеза ссаминофосфонатов в условиях микроволнового содействия в присугствии катализатора СdI₂. Этот метод, разработанный М.М. Кабачник и Е.В. Зобниной, позволил нам быстро (в течение 5--20 мин) в мягких условиях получить и-аминофосфонаты. Мы применили данный метод для получения циклопропил- и циклобутилзамещенных 1-аминофосфонатов из лабильных альдегидов 8, 19-22, введя их в реакцию с диэтилфосфитом и бензиламином в присутствии CdI₂ при микроволновом облучении. Для удаления образующейся в ходе реакции воды были использованы молекулярные сита с размером пор 4 Å. В результате была получена серия а аминофосфонатов 30-34 в рацемической форме с хорошими выходами в мягких условиях (Табл. 1).

Синтезированные фосфонаты могут быть превращены в соответствующие ааминофосфоновые кислоты традиционным способом в результате снятия бензильной защитной группы и гидролиза диэтоксифосфорильного фрагмента. Особо следует отметить синтез спиропентанового аминофосфоната 34, являющегося предшественником биоизостерного аналога синтезированной в данной работе двухосновной аминокислоты 1.

2.2. Изучение реакционной способности диазофосфонатов по отношению к олефинам.

При разработке методов получения циклопропансодержащих аминофосфоновых кислог — аналогов АЦК — основное внимание было направлено на изучение карбеновых подходов к соединениям данного типа. В этом случае ключевым моментом является выбор соответствующего диазосоединения. Перспективное диазосоединение должно содержать функциональные группы, которые можно доступным образом трансформировать в аминофосфонатный фрагмент. Наиболее распространенными предшественниками аминогруппы являются нитро- и трет-бутоксикарбонильная группы, поэтому мы остановили свой выбор на двух дназореагентах — трет-бутил(диэтоксифосфорил)диазоацетате (ТБФДА) и диэтил(нитро(диазо)метил)фосфонате (НДМФ) (Схема 6).

Схема 6.

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Прежде, чем приступить к изучению реакционной способности вышеуказанных диазосоединений, было предпринято исследование реакционной способности незамещенного диазофосфоната — диэтилфиазометилфосфоната (ДМФ) по отношению к олефинам различного строения, поскольку в литературе отсутствует достаточное количество информации по данному вопросу.

2.2.1. Реакции диэтил(диазометил)фосфоната с алкенами.

Незамещенный диазофосфонат (ДМФ) синтезировали по литературной методике из фталимида (Схема 7). До наших работ было описано каталитическое присоединение ДМФ к некоторым алкенам, преимущественно к стиролам, в присутствии медных или родиевых катализаторов с образованием соответствующих фосфоноциклопропанов.

Схема 7.

Мы изучили реакционную способность ДМФ в условнях кагалитического [1+2]циклоприсоединения по отношению к олефинам различного строения с использованием в качестве катализатора ацетата родия (II), в том числе к олефинам, содержащим малые циклы. Было найдено, что этот реагент гладко присоединяется к олефинам с пространственно незатрудненной двойной связью 15, 37–39 с образованием соответствующих циклопропановых аддуктов 42–45 с хорошими выходами (Схема 8). Такие же результаты наблюдаются и для донорных алкенов — винилэтилового эфира 40 и дигидропирана 41.

Схема 8.

При возрастании стерической нагруженности непредельного субстрата выход циклопропана резко падает. Так, в реакционной смеси гексена-1 доля циклопропана, по дашным спектроскопии ЯМР ³¹Р, не превыщает 15%. В случае циклогексена — алкена с 1,2-дизамещенной двойной связью — образования циклопропана не происходит вообще, аналогичная ситуация наблюдается и для тетразамещенных алкенов — бициклопропилидена и бициклобутилидена.

2.2.2. Реакции трет-бутил(диэтоксифосфорил) диазоацетата с алкенами.

На следующем после изучения реакции ДМФ с олефинами этапе работы, нами была исследована реакционная способность замещенных диазофосфонатов, содержащих дополнительную функциональную группу, являющуюся синтетическим эквивалентом аминогруппы. В литературе описано несколько методик синтеза различных диэтоксифосфорилдиазоацетатов, а также единичные примеры участия этих соединений в реакциях каталитического [1+2]-циклоприсоединения. Синтез диазофосфоната, содержащего третбутоксикарбонильную группу (ТБФДА) был осуществлен из коммерчески доступного третбутилхлорацетата 48 по известной методике (Схема 9).

Схема 9.

Изучая поведение ТБФДА в условиях каталитического [1+2]-циклоприсоединения к различным олефинам, мы обнаружили, что данный диазореагент обладает неожиданно низкой реакционной способностью — циклопропаны удалось получить лишь из пространственно незатрудненных алкенов при существенном нагревании. Выделить и охарактеризовать удалось лишь три новых представителя ряда *трет*-бутоксифосфоноциклопропанов 50–52 (Схема 10).

Схема 10.

Таким образом, несмотря на доступность исходного диазосоединения ТБФДА разработка общего подхода к получению циклопропановых α-аминофосфоновых кислот на его основе представляется нецелесообразным, поскольку круг алкенов, активных в реакции циклофосфонилирования, сильно ограничен.

2.2.3. Реакции диэтил(нитро(диазо)метил)фосфоната с алкенами.

В литературе описан единичный пример синтеза диэтил(нигро(диазо)метил)фосфоната (НДМФ), рассматриваемого нами в качестве перспективного реагента для синтеза циклопропановых аминофосфоновых кислот. Этот метод получения НДМФ основан на нитровании незамещенного диазофосфоната пентаоксидом азота и имеет ряд существенных недостатков, таких как невысокий выход продукта нитрования и сложность его выделения его из реакционной смеси. По-видимому, именно с этими факторами связано то, что реакционная способность и синтетический потенциал нитродиазофосфоната не были изучены до настоящего времени. Нами был разработан альтерпативный, более простой метод синтеза НДМФ из коммерчески доступного хлорацетона 53 (Схема 11).

Схема 11.

Реакции Финкельштейна и Арбузова с последующим нитрованием приводят к нитрофосфонату 54, введение которого в реакцию диазопереноса с трифлилазидом в присутствии пиридина приводит к образованию диазосоединения НДМФ с хорошим выходом.

Мы изучили широкий ряд олефинов в реакциях каталитического [1+2]циклоприсоединения с НДМФ в присутствии Rh₂(OAc)₄. Было установлено, что, в зависимости от строения исходного алкена могут реализовываться три пути взаимодействия НДМФ с олефинами (Схема 12).

Схема 12.

В соответствии с предложенной схемой, при взаимодействии с родиевым катализатором НДМФ теряет молекулу азота с образованием нитро(диэтоксифосфорил)карбена а. [1+2]-Циклоприсоединение этого карбена к алкенам, приводящее к получению αнитроциклопропилфосфонатов I, является основным направлением реакции (путь A) для большинства изученных алкенов. Кроме этого, в отдельных случаях карбен а может реагировать как 1,3-диполь, образуя N-оксиды изоксазолинов II (путь B, реакция [3+2]-циклоприсоединения), или пеобратимо перегруппировываться в ацилнитрозоинтермедиат с, который далее реагирует как енофил с образованием производных гидроксикарбамоилфосфоновой кислоты III (путь C, еновая реакция).

Мы обнаружили, что НДМФ, в целом, гладко присоединяется к пространственно незатрудненным алкенам в присутствии каталитических количеств ацетата родия (II) с образованием нитроциклопропилфосфонатов 57–62 с выходами от умеренных до высоких (Схема 13). Изучение в этой реакции олефинов с малыми циклами представляло особый

интерес, поскольку образующиеся аддукты являются непосредственными предщественниками новых α-аминофосфоновых кислот циклопропанового и триангуланового рядов.

Схема 13.

По мере возрастания стерических затруднений в олефиновом субстрате и, соответственно, падения реакционной способности алкена, выходы циклопропанов понижаются и наблюдается образование побочных продуктов и продуктов разложения нитрофосфорилкарбена. Так, уже для гексена-1 выход циклопропана 65 составляет 25%, а основным продуктом является производное гидроксикарбамоилфосфоновой кислоты 66, образующееся в результате изомеризации карбена в интрозосоединение, которое далее вступает с алкенами в еновую реакцию (Схема 14). В случае бициклобутилидена 64 образования пиклопропана не происходит и единственным продуктом является фосфонат 67, в то время как в реакционных смесях циклогексена с НДМФ и бициклопропилидена с НДМФ присутствуют лишь продукты разложения диазореагента.

Схема 14.

Необычную реакционную способность НДМФ проявляет по отношению к олефинам 39—41, 68 (Схема 15). Так, в случае донорных алкенов — виниловых эфиров 40, 41, 68 — единственными продуктами реакции с НДМФ являются N-оксиды изоксазолинов 71—73, которые образуются в результате каталитического [3+2]-циклоприсоединения. Согласно данным спектроскопии ЯМР, в реакционной смеси метиленепирогексана 39 присутствуют сигналы как циклопропана 69, так и изоксазолина 70 в примерно равных соотношениях.

Схема 15.

Однако, при попытке разделить смесь хроматографически, нитроциклопропилфосфонат 69 в чистом виде выделить не удалось, а N-окись 70, напротив, была выделена с удвоенным выходом. Этот факт свидетельствует о полной изомеризации циклопропана 69 в изоксазолин 70 на силикагеле. В литературе имеются примеры подобного поведения нитроциклопропанкарбоксилатов. Кроме того, описана реакция изомеризации циклопропанов в N-оксиды при нагревании или под действием кислот Льюиса. По-видимому, движущей силой процесса изомеризации с раскрытием трехчленного цикла является уменьшение напряжения в циклопропановом фрагменте.

2.3. Синтез а-аминоциклопропилфосфоновых кислот.

Сравнивая данные, полученные в результате изучения реакционной способности НДМФ и ТБФДА по отношению к алкенам, мы пришли к выводу, что наиболее целесообразным для синтеза циклопронановых аминофосфоновых кислот является использование именно НДМФ, который гладко и предсказуемо реагирует с олефинами, содержащими малые циклы, и на основе которого удалось получить достаточно многочисленный ряд новых циклопропановых α-нитрофосфонатов 57–62, 65.

Полученные при циклопропанировании олефинов НДМФ нитроциклопропановые аддукты 57–62, 65 были использованы в синтезе α-аминоциклопропанфосфоновых кислот. Ключевой стадией их синтеза является восстановление нитрогруппы до аминогруппы. Сложность выбора восстановителя, как и в случае ранее синтезированных циклопропановых аминокислот, связана с наличием лабильного трехчленного цикла, который может раскрываться в условиях гидрогенолиза. Мы показали, что α-нитрофосфонаты, содержащие циклопропановый фрагмент, гладко восстанавливаются в системе Zn–AcOH-*i*-PrOH до аминофосфонатов 74–79 в мягких условиях с высокими выходами без образования побочных продуктов (Табл. 2). Следует также отметить, что эти реакции являются первыми примерами восстановления нитросоединений, содержащих фосфонатную группировку в α-положении к нитрогруппе.

Таблица 2. Восстановление и гидролиз α-нитроциклопропанфосфонатов.

Нитрофосфонат	Аминофосфонат	Выход, %	Аминофосфоновая кислота	Выход, %
Ph ————————————————————————————————————	Ph————————————————————————————————————	81	Рh- Р(О(ОН) ₂	93
O ₂ N P(O)(OE() ₂	P(O)(OE1)2	86	P ₍ O)(OH) ₂ 81	95
P(0)(OEt) ₁ NO ₁	P(O)(OE1)2 N112	85	P(O)(OH) ₂	82
O ₂ N	P(O)(OEt) ₂	91	P(O)(OH) ₂ 83	94
O ₂ N e(O)(OE:0 ₂	P(O)(OE() ₂	89	P(O)(OH) ₁	92
и-С ₄ II, — Р(О)(ОЕ4) ₂ О ₂ N 65	H ₁ N P(O)(OF:) ₂	91	n-C ₄ H ₃ ———————————————————————————————————	87

Для расщепления диэтоксифосфорильной группы известны два основных метода — кипячение с концентрированной кислотой и обработка триметилсилилгалогенидами. Для напряженных циклопропановых систем применение сильнокислых сред нежелательно, поскольку это может приводить к раскрытию малого цикла, поэтому мы решили использовать для гидролиза фосфонатной группы триметилсилильные реагенты. Было показано, что циклопропановые α-аминофосфонаты при взаимодействии с триметилсилилбромидом в мягких условиях с последующей обработкой смесью этанола и пропиленоксида

образуют целевые α-аминоциклопропанфосфоновые кислоты 80–85 с выходами, близкими к количественным (Табл. 2).

Для получения спирогексановой кислоты 86, представляющей интерес в качестве бноизостерного конформационно жесткого аналога глутаминовой кислоты, потребовалась дополнительная стадия гидролиза СООМе-группы в соединении 82 (Схема 16). Эта задача была успешно решена путем обработки сложного эфира разбавленной соляной кислотой, в результате чего с практически количественным выходом была получена целевая аминофосфоновая кислота 82 в виде гидрохлорида.

Схема 16.

Таким образом, нами был разработан препаративно удобный карбеновый метод синтеза циклопропановых α-аминофосфоновых кислот, являющихся биоизостерными аналогами α-аминоциклопропанкарбоновых кислот. Полученные экспериментальные данные свидстельствуют об эффективности и универсальности предложенного подхода.

Выводы

- Разработаны и осуществлены синтезы двухосновных аминокислот спиропентанового ряда — 1-аминоспиро[2.2]пентан-1,4-дикарбоновой и 4-(амино(карбокси)метил)спиро[2.2]пентан-1-карбоновой кислот — перспективных лигандов глутаматных рецепторов.
- 2. Предложен подход к синтезу 4-аминоспиро[2.2]пентан-1-карбоновой и 1-аминоспиро[2.3]гексан-5-карбоновой кислот новых конформационно жестких лигандов ГАМК-рецепторов.
- 3. Выполнено комплексное исследование реакционной способности диазофосфонатов по отношению к различным олефинам. Проведено сравнение реакционной способности трех диазофосфонатов диазометилфосфоната (ДМФ), трет-бутил(диэтоксифосфорил)диазоацетата (ТБФДА) и диэтил(нитро(диазо)метил)фосфоната (НДМФ). Показано, что НДМФ существенно более реакционноспособен и, ввиду этого, более удобен для синтеза α-аминоциклопропанфосфоновых кислот.

- Разработан новый удобный метод синтеза диэтил(нитро(диазо)метил)фосфоната (НДМФ) — перспективного диазореагента для получения α-нитроциклопропилфосфонатов — предшественников аминофосфоновых кислот циклопропанового ряда.
- 5. Изучены основные закономерности каталитического взаимодействия НДМФ с олефинами, в том числе содержащими малые циклы. Установлено, что, в зависимости от структуры исходного алкена, реализуются три направления реагирования:
 - а. реакции [1+2]-циклоприсоединения, приводящие к образованию нитрофосфоноциклопропанов (основное направление реакции);
 - реакции [3+2]-циклоприсоединения с образованием N-окисей изоксазолинов (для донорных алкенов);
 - в. изомеризация карбена в нитрозосоединение, реагирующее с алкенами с образованием гидроксикарбамоилфосфонатов.
- Разработан препаративно-удобный метод синтеза α-аминоциклопропилфосфоновых кислот, включающий восстановление нитрогруппы и расцепление фосфонатного фрагмента. Синтезирована серия циклопропановых α-аминофосфоновых кислот.
- Впервые изучена реакция аминофосфорилирования в ряду альдегидов, содержащих малые циклы, в результате чего синтезирован ряд новых аминофосфонатов циклопропанового и циклобутанового рядов — предшественников биоизостерных аналогов циклопропилитицина.

Основное содержание работы изложено в следующих публиканиях:

- 1. А. В. Чемагин, Н. В. Яшип, Е. Б. Аверина, Т. С. Кузнецова, Н. С. Зефиров. Новый метод получения 1-аминоспиро[2.2]пентан-1,4-дикарбоновой кислоты. ДАН, **2008**, 419 (6), 772–774.
- N. V. Yashin, E. V. Villemson, A. V. Chemagin, E. B. Averina, M. M. Kabachnik, T. S. Kuznetsova. Synthesis of novel α-aminophosphonates containing small rings. Synthesis, 2008, (3), 464–468.
- A. V. Chemagin, N. V. Yashin, Yu. K. Grishin, T. S. Kuznetsova, N. S. Zefirov. Diethyl Nitrodiazomethylphosphonate: Synthesis and Reactivity towards Alkenes. Synthesis, 2010, (2), 259-266.
- A. V. Chemagin, N. V. Yashin, Yu. K. Grishin, T. S. Kuznetsova, N. S. Zefirov. Synthesis of α-Aminocyclopropylphosphonic Acids. Synthesis, 2010, (19), 3379–3383.
- А. В. Чемагин, Н. В. Яшин. Синтез 4-(аминокарбоксимстил)-спиро[2.2]пентанкарбоновой кислоты. XII Международная конференция студентов, аспирантов и молодых ученых по фундаментальным паукам «Ломоносов-2005», Москва, 12–15 апреля 2005, 192.
- A. V. Chemagin, N. V. Yashin, E. B. Averina, T. S. Kuznetsova, N. S. Zefirov. The first synthesis of racemic 4-(aminocarboxymethyl)-spiro[2.2]pentane-1-carboxylic acid. 4th International Youth Conference on Organic Synthesis, Saint-Petersburg, Russia, June 27-30 2005, 248.
- А. В. Чемагин, Н. В. Яшин, Е. Б. Авервна, Т. С. Кузнецова. Подходы к получению двухосновных аминокислот спиропентанового ряда. Синтез 4-(амино(карбокси)метил)спиро[2.2]пентанкарбоновой кислоты. IX Научная школа-конференция по органической химии, Звенигород, 11–15 декабря 2006, 394.
- А. В. Чемагин, Н. В. Яшин. Подходы к получению двухосновных аминокислот спиропентанового ряда. XIV Международная конференция студентов, аспирантов и молодых ученых «Ломоносов-2007», Москва, 11–14 апреля 2007, 311.
- А. В. Чемагин, Н. В. Яшин, Е. Б. Аверина, Т. С. Кузнецова. Синтез новых 1аминофосфонатов, содержащих малые циклы. Х Молодежная конференция по органической химии, Уфа, 26–30 ноября 2007, 67.

- А. В. Чемагин, Н. В. Яшин. Синтез новых неприродных спироциклических аминокислот, содержащих малые циклы. XV Международная конференция студентов, аспирантов и молодых ученых «Ломоносов-2008», Москва, 8–11 апреля 2008, 533.
- 11. Н. В. Яшин, А. В. Чемагин, Е. Б. Аверина, Т. С. Кузнецова. Синтез α-аминофосфонатов циклопропанового ряда. XI Международная научно-техническая конференция «Перспективы развития химии и практического применения алициклических соединений», Волгоград, 3–6 июня 2008, 87.
- 12. Н. В. Яшин, А. В. Чемагин, Е. Б. Аверина. Спитез новых аминокислот спиропентанового и спирогексанового рядов потепциальных лигандов mGluRs и GABA-рецепторов. XI Международная научно-техническая конференция «Перспективы развития химии и практического применения алициклических соединений», Волгоград, 3–6 июня 2008, 166.
- 13. А. В. Чемагин, Н. В. Яшин. Диэтилнитродиазометилфосфонат: получение и изучение его реакционной способности по отношению к олефинам. XV Международная конференция студентов, аспирантов и молодых ученых «Ломоносов-2009», Москва, 13–18 апреля 2009.
- 14. A. V. Chemagin, N. V. Yashin, E. B. Averina, T. S. Kuznetsova. Diethyl nitrodiazo-methylphosphonate: synthesis and reactivity towards olefins. 5th International Conference on Organic Chemistry for Young Scientists, Saint-Petersburg, Russia, June 22-25, 2009, 36.
- 15. Н.В. Яшин, А.В. Чемагин, Т.С. Кузнецова, Н.С. Зефиров. Диэтилнитродиазометилфосфонат: синтез и изучение реакционной способности по отношению к алкенам. Всероссийская конференция «Химия нитросоединений и родственных азот-кислородных систем», Москва, 21–23 октября 2009, 52.
- 16. А. В. Чемагин, Н. В. Яшин, Т. С. Кузнецова, Н. С. Зефиров. Диэтилнитродиазометилфосфонат: получение и изучение реакционной способности по отношению к олефинам. XII Молодежная конференция по органической химии, Суздаль, 7–11 декабря 2009, 184.
- 17. А.В. Чемагин, Н.В. Яшин, Т.С. Кузнецова, Н.С. Зефиров. Диэтил(нитро(диазо)метил)фосфонат: получение и использование в синтезе циклопропановых α-аминофосфоновых кислот. International Symposium «Advanced Science in Organic Chemistry», Miskhor, June 21–25, 2010, C-231.

Отпечатано в копицентре « СТ ПРИНТ » Москва, Ленинские горы, МГУ, 1 Гуманитарный корпус. e-mail: globus9393338@yandex.ru тел.: 939-33-38 Тираж 110 экз. Подписано в печать 07.10.2010 г.